• Title/Summary/Keyword: Procedure angle

Search Result 603, Processing Time 0.021 seconds

Analysis of Door Effort using 2D Model (2차원 모델을 이용한 도어 개폐력 해석)

  • 김창원;강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.131-137
    • /
    • 2003
  • Proper door effort, required force to open or close a vehicle door, is an essential door design factor for the safety of passengers and pedestrians. Section shape of the door checker arm is the most influential design parameter for achieving a door effort design target. In this research. an analysis procedure to predict door effort using a simplified plane strain finite element model wes investigated for two passenger cars, for which mechanism of checker systems were: different. The variation of checker arm force to be required during moving on arm in opening and closing direction was estimated through analysis, and the result was transformed to the door effort with respect to door opening angle by considering door characteristics. Also, the self·closing force due to door weight was theoretically calculated and added to the door effort from checker arm force. Finally the estimated results of door effort were compared with test results.

A Study on Slip Frequency Control And Frequency Compensation in CSIM (전류형 인버터로 구동되는 유도 전동기의 슬립 주파수 제어와 주파수 보상에 관한 연구)

  • Jeon, Hi-Jong;Kim, Chun-Soo;Lee, Myong-Woo;Jeong, Won-Seok;An, Jae-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.306-309
    • /
    • 1988
  • For the purpose of fast response and simplifing system angle control strategy is selected. And the analysis and dynamic performance of a slip frequency controlled current source inverter fed induction motor drive with stator frequency compensation (indirect torque angle control) is investigated. The current control loop including motor is modeled and speed control loop including the frequency compensation is analysed. And transfer function of overal system is simplified. Experimental results are given in support of the analytical procedure.

  • PDF

Progressive Collapse and Seismic Performance of Twisted Diagrid Buildings

  • Kwon, Kwangho;Kim, Jinkoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.223-230
    • /
    • 2014
  • In this study the progressive collapse resisting capacities of tall diagrid buildings were evaluated based on arbitrary column removal scenario, and the seismic load-resisting capacities were investigated through fragility analysis and ATC 63 procedure. As analysis model structures both regular and twisted diagrid structures were designed and their load-resisting capacities were compared by nonlinear static and dynamic analyses. The analysis results showed that the progressive collapse potential of twisted buildings decreased as the twisting angle increased, but the seismic fragility or the probability of failure decreased as the twisting angle increased.

In Situ Rockfall Tests for Evaluation of Rockfall Protection Fences (국내 낙석방지울타리의 적정성 파악을 위한 현장 실물 실험 및 설계기준 제시)

  • 구호본;박혁진;이경미;김규한;이재욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.629-634
    • /
    • 2000
  • Rockfall protection fence which is used for mitigation of rockfall hazard, has been constructed without consideration of lithology, height and dip angle of rock slope. However, those factors should be considered for the construction of the protection fence. In addition, the protection fence should be evaluated its performance by in-situ test in order to utilize the fence effectively. This is the first full sized rockfall test in Korea. For this test, the rock cut slope whose height is about 20 m and dip angle is 65 $^{\circ}$ has been chosen. Based on the preliminary simulation procedure, four different concrete balls (0.5 ton, 1.0 ton, 2.0 ton and 5.0 ton) were prepared and four different types of protection fence were constructed. The results of this test will be utilized in the establishment of rockfall protection fence construction manual.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS FOR HIGH ANGLE OF ATTACK MANEUVER MISSILE (고받음각에서 기동하는 미사일의 공력-구조 연계 해석)

  • Noh, K.H.;Park, M.Y.;Park, S.H.;Lee, J.W.;Byun, Y.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.111-114
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM) are used to perform aerodynamics analysis and structure analysis. For the fluid-structure interaction analysis, each technology should be considered as well. The process of aerodynamics-structure coupled analysis can be applied to various integrated analyses from many research fields. In this study, the aerodynamics-structure coupled analysis is performed for the missile at high angle of attack condition through the use of Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For this purpose, the aerodynamics-structure coupled analyses procedure for the missile are established. The results of the integrated analysis are compared with rigid geometry of the missile and the effect of the deformation will be addressed.

  • PDF

Vibration analysis of laminated graphite-epoxy circular cylindrical shells (CFRP 적층 원통셸의 진동해석)

  • 이영신;문홍기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.670-674
    • /
    • 1988
  • Vibration characteristics of laminated circular cylindrical shells are investigated using a theoretical procedure developed in the previous papers. Numerical results are presented for a family of graphite-epoxy cylindrical shells with layers of angle-ply and cross-ply laminated either symmetrically or antisymmetrical about the shell middle surface. Effects of the different shell boundary conditions and geometries, as well as number and angle of orientation of the lamina, on the natural frequencies are also demonstrated.

Investigation on the Improvement of Computer Aided Calibration Methods for Hot-Wire and Hot Film Probes (컴퓨터원용 열선 및 열필름 프로브의 교정방법 개선에 대한 연구)

  • 김경천;윤순현;신영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.977-985
    • /
    • 1994
  • New computer-aided calibration methods for the hot-wire and split film probes are presented. The proposed modified king's law takes into account instantaneous flow angle as well as the variation of calibration coefficients due to the total velocity magnitude change. It is found that the look-up table method has many advantages with respect to the accuracy on data and reducing run time for calibration over other conventional methods. In order to investigate the local sensitivity of the static calibration, a dynamic calibration procedure is also carried out.

A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for

  • Walker, M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.253-262
    • /
    • 2007
  • A methodology to design symmetrically laminated fibre-reinforced structures under transverse loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and boundary conditions are optimally designed and compared.

Hydrodynamically Optimal Blade Design for 500kW Class Horizontal Axis Tidal Current Turbine (500kW급 수평축 조류발전기의 수력 최적 설계)

  • Ryu, Ki-Wahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.73-80
    • /
    • 2009
  • A tidal current turbine is designed and analyzed numerically by using blade element momentum theory. The rated power has a limitation because the diameter of the tidal current turbine cannot exceed the depth of sea water. This study investigates a horizontal axis tidal-current turbine with a rated power of 500 kW. NACA-6 series laminar foil shape is used for basic airfoil along the blade span. The distributions of chord length and twist angle along the blade span are obtained from the hydrodynamic optimization procedure. Prandtl's tip loss correction and angle of attack correction considering the three-dimensional effect are applied for this study. The power coefficient curve shows maximum peak at the rated tip speed ratio of 6.0, and the maximum torque coefficient is developed at the tip speed ratio of 4. The drag coefficient reaches about 0.85 at the design tip speed ratio.

Effects of Blade Shape on the Dynamics of Turbo-machinery (깃 형상이 터보기계의 동특성에 미치는 영향)

  • 전상복
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.477-484
    • /
    • 1998
  • An analytical procedure on the base of the substructure synthesis and assumed modes method is developed to investigate the flexibility effect of bladed disk assembly on vibrational modes of flexible rotor system. In modeling the system, Coriolis forces, gyroscopic moments, and centrifugal stiffening effects are taken into account. The coupled vibrations between the shaft and bladed disk are then extensively investigated through the numerical simulation of simplified models, with varying the shaft rotational speed and the prewist and stagger angles of the blade. It is found that the Coriolis and inertia forces and the inertia torque, which are induced by the one nodal diameter modes of the bladed disk and vary depending upon the stagger and prewist angles, lead to the coupled motions of the shaft and the bladed disk.

  • PDF