RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구 (A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis)
-
- 지능정보연구
- /
- 제25권1호
- /
- pp.139-161
- /
- 2019
전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.
최근 추천시스템 분야에서는 희소한 데이터를 효과적으로 모델링하기 위한 다양한 연구가 진행되고 있다. GLocal-K(Global and Local Kernels for Recommender Systems)는 그중 하나의 연구로 전역 커널과 지역 커널을 결합하여 데이터의 전역적인 패턴과 개별 사용자의 특성을 모두 고려해 사용자 맞춤형 추천을 제공하는 모델이다. 하지만 GLocal-K는 커널 트릭을 사용하기 때문에 매우 희소한 데이터에서 성능이 떨어지고 부가 정보를 사용하지 않아 새로운 사용자나 아이템에 대한 추천을 제공하는 데 어려움이 있다. 본 논문에서는 이러한 GLocal-K의 단점을 극복하기 위해 EASE(Embarrassingly Shallow Autoencoders for Sparse Data) 모델과 부가 정보를 활용한 GEase-K(Global and EASE kernels for Recommender Systems) 모델을 제안한다. 우선 GLocal-K의 지역 커널 대신 EASE를 활용하여 매우 희소한 데이터에서 추천 성능을 높이고자 하였다. EASE는 단순한 선형 연산 구조로 이루어져 있지만, 규제화와 아이템 간 유사도 학습을 통해 매우 희소한 데이터에서 높은 성능을 내는 오토인코더이다. 다음으로 Cold Start 완화를 위해 부가 정보를 활용하였다. 학습 과정에서 부가 정보를 추가하기 위해 조건부 오토인코더 구조를 적용하였으며 이를 통해 사용자-아이템 간의 유사성을 더 잘 파악할 수 있도록 하였다. 결론적으로 GEase-K는 선형 구조와 비선형 구조의 결합, 부가 정보의 활용을 통해 매우 희소한 데이터와 Cold Start 상황에서 강건한 모습을 보인다. 실험 결과, GEase-K는 매우 희소한 GoodReads, ModCloth 데이터 세트에서 RMSE, MAE 평가 지표 기준 GLocal-K 보다 높은 성능을 보였다. 또한 GoodReads, ModCloth 데이터 세트를 4개의 집단으로 나누어 실험한 Cold Start 실험에서도 GLocal-K 대비 Cold Start 상황에서 좋은 성능을 보였다.
Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].
2017년 한국소비자원에 접수된 항공여객운송서비스 관련 피해구제 접수건수는 1,252건으로 2016년 1,262건 대비 0.8% 감소하여 2013년 이후 처음으로 감소세를 나타냈다. 그리고 2017년 한국소비자원에 접수된 항공여객운송서비스 분야의 피해구제 접수건 가운데 444건(35.4%)이 합의가 성립되었으며, 합의가 성립되지 않은 건 중에서 정보제공 상담 기타로 종결된 경우가 588건(47.0%)으로 가장 많았고, 소비자분쟁조정위원회에 조정 신청된 경우가 186건(14.9%)이었다. 항공서비스 소비자 피해구제와 분쟁해결을 위한 규정을 두고 있는 주요입법으로는 항공사업법, 소비자기본법 등이 있는데, 항공사업법에서 항공교통사업자의 피해구제절차와 처리계획의 수립 및 이행 그리고 피해구제 신청 접수 및 처리, 항공교통이용자 보호기준의 고시 등에 관하여 규정하고 있으며, 소비자기본법에서 소비자상담기구의 실치 운영, 한국소비자원의 피해구제, 소비자분쟁의 조정, 소비자분쟁해결기준의 제정 등에 관하여 규정하고 있다. 항공서비스 소비자 피해구제 절차로는 항공교통사업자의 피해구제 접수 처리, 소비자상담센터의 상담 및 피해구제 접수 처리, 한국소비자원의 합의권고, 소비자분쟁조정위원회의 분쟁조정제도 등이 있다. 현행 항공서비스 소비자 피해구제 및 분쟁조정 제도에는 항공사업법 상 항공교통사업자의 피해구제계획 수립 및 이행 의무의 면제, 항공부문 소비자분쟁해결기준 상 운송 불이행 및 지연의 경우 면책 등에 대하여 문제점이 있고, 그리고 소비자기본법상 소비자분쟁조정의 절차진행 및 조정성립에 대하여 한계점이 있다. 따라서 항공서비스 소비자에 대한 적절한 피해구제와 원활한 분쟁조정을 위하여 관련 제도의 개선방안을 제시하면 다음과 같다. 첫째 항공서비스 소비자 피해구제 관련 법규의 정비이다. 항공사업법 상 항공교통사업자의 피해구제계획 수립과 이행 의무의 면제규정이 수정되어야 할 것이다. 또한 항공서비스 소비자 보호와 피해구제에 관한 법 규정의 체계화와 전문성 제고를 위해 미국연방규칙 14 CFR 및 EU의 EC 261/2004 규칙과 유사한 별도 입법을 마련할 필요가 있을 것이다. 둘째 항공서비스 소비자 분쟁해결기준의 개선이다. 항공부문 소비자분쟁해결기준 상 항공사업자의 운송 불이행 및 운송지연의 경우 면책사유의 발생 원인이 불가항력이었는지를 규명하여 면책여부를 판별하여야 하고, 상법 항공운송편 및 1999년 몬트리올 협약에 규정된 면책사유와 같이 수정되어야 하며, 대체편이 제공된 운송 불이행의 경우와 운송지연에 대하여 배상기준을 통일하는 것이 필요할 것이다. 셋째 항공서비스 소비자 피해구제를 위한 정보제공의 강화이다. 항공관련 정부기관 및 유관기관들은 항공사 및 공항과 협력하여 항공서비스 소비자 피해구제를 위한 법규와 정책 등 다양한 정보를 항공교통이용자에게 보다 신속 명확하게 제공해야 할 것이다. 넷째 소비자분쟁조정의 효력 등에 관한 보완이다. 분쟁조정에 대한 수락 의사표시가 없을 경우 수락한 것으로 보는 것은 부당하므로 이의신청제도를 추가할 필요가 있을 것이다. 또한 소비자분쟁조정위원회 이외 다른 분쟁조정기구에 중복으로 분쟁해결을 신청한 경우 피해구제 대상에서 제외하고 있으나 당사자가 조정기관을 선택할 수 있도록 해야 할 것이다. 그리고 소비자분쟁이 조정을 통하여 효율적으로 해결될 수 있도록 조정성립률을 높일 수 있는 제도적 방안을 강구할 필요가 있을 것이다. 다섯째 항공서비스 소비자 중재제도의 도입이다. 소비자분쟁 조정제도의 한계점을 보완할 수 있는 방안으로 소비자 중재제도를 도입하되, 소비자기본법 상 중재 도입안과 중재법 상 소비자중재 도입안이 있는데, 후자의 방안이 적합할 것으로 생각된다. 결론적으로, 정책과제로서 항공서비스 소비자의 피해 예방 및 구제를 강화하는 법 제도를 마련하고, 항공서비스 선진화를 위한 소비자 중심의 정책을 수립 추진해야 할 것이다.
많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.
According as the automation of clerical work(OA ; Office Automation) develops, the use of VDT(Visual or Video Display Terminal) is increasing suddenly. But, in proportion to the spread of office automation(OA tendency), the self-conciousness syptom attendant upon the work is appearing also (Kim, Jung Tae, Lee, Young Ook, 1990). The apparatuses of office enable the clerical workers to be convenient and perform mass businesses. But, they are increasing the opportunity to be exposed to VDT syndrom, techno stress, computer terminal disease, pain by muscle strain(RSI), bradycausia of noise nature, and electromagnetic waves, etc. which are referred to as the new type of occupational diseases to the workers. It is the real situation that the workers to use VDT is complaining of the physical inconvenience sense in the recent newspaper and literature, it is the point of time that the sydrome to come from VDT use and computer terminal disease, etc. must be classified into the occupational disease(Lee, Kwang Young 1990, Lee, Kyoo Hak 1990, Lee, Won Ho 1991, Lee, Si Young 1991, Lee, Joon 1991, Choi, Young Tae 1991, Heo, Seung Ho 1989). In addition, it is the real situation that the scientifitic study result about the scope that electromagnetic waves has influence on the human body has not been suggested yet, and criticism on the stable exposure permission standard about electromagnetic waves to be emitted from VDT and on the problem in the health about electromagnetic waves is continuing. (IEEE Spectrum, 1990). In addition according to the experience of nursery business of industry field, it is the real situation that the patients who consult complaining of physical and mental inconvenience sence, among the users of apparatus of office automation, are reaching 10% of the patients coming to doctor's room. Therefore, it is necessary to confirm the self-consciousness symptom that the clerical workers complain of multilaterally with the actual state examination about the use of the apparatuses of offices automaton. Thus, this study was tried as th basic data for the cosultation and education for the maintenance and furtherance of the health of workers as the nurse of industry field, by confirming the contents of self-consciousness symptom attendant upon the use of the apparatus for office outomation making the financial institution in which the spparatus for office automation in most frequently used as the subject, and by examining whether there is the difference according to the subject of study, the data were collected, by using the questionnaire method, making 200 workers who consented to the study participation as the subject, among the persons who have spent over 3 months since they used the apparatuses for office automation and didn't receive the treatment in hospital due to the clerical disease for recent 3 years. The period of data collection was from Oct. 9, 1991 to Oct. 12. As for the measurement instrument about the complaint if self-consciousness symptom attendant upon the use of apparatuses fo office automation, the question item on the complaint symptom of health problem attendant upon the treatment of VDT that Kim(1991) developed and on CMI health problem and the question items on the fatigue degree due to industry were used by previous examination to 25 persons. Collected data were analyzed with the statistical method such as percentage, arithmetic mean, Person correlation coeffient, Kai square verfication, t-test, ANOVA, etc. by using SPSS/PC+ program, and the result is as follows : 1. The self-consciousness symptom that the clerical workers complained of most frequetly appeared high in 'My eyes are tired'(99.4%), 'I feel fatigue and weariness'(99.4%), 'I feel that my head is heavy5(90.0%), 'eyesight fell'(88.8%), 'I have a stiff neck'(88.8%), 'I fell pain in the shoulder'(85.0%), 'I feel cold and painful in the eyes'(76.9%), 'I feel the dry sense of eyeball'(76.2%), 'My nerves are edgy, and I an fretful, (75.6%), 'I feel pain in the waist'(73.2%) and 'I fell pain in the back'(72.8%). It emerged that the subject use the apparatuses for office automation complained of self-consciousness symptoms related to visual symptoms and musculoskeletal symptoms. 2. As for the general feature of examination subjects, the result to see the distribution by classifying into sex, age, school career, use career of apparatuses for office automation, skillfulness degree of the use of apparatus for office automation, use hours of the apparatuses for office automation per 1 day, type of business of the apparatus for office automation, rest hours during the use of apparatus for office automation, satifaction degree of business of office automation, and work circumstance, etc. emerged as follows : As for the sex of subjects, the distribution showed that men were 58.8% and women were 41.3%, Age was average 26.9. As the distribution of school career, the distribution showed that4below the graduation of high school' was 58.8%, 'graduation from junior college-university' was 35.0%, and 'over graduate school' was 6.3%. In the question to ask the existence or non-existence of experience of health consultation in connection with the work of office automation, the response that I had the consultation exprience and I feel the necessity emergerd as 90.1% And, the case that the subject who didn't wear the glasses or lens before using the OA apparatus wear glasses or lens after using OA apparatus emerged as 28.3% of whole. As for the existence or non-existence of use career of OA apparatus, the case under 3 years was highest as 52. 7%. As for the skillfulnness degree about the use of apparatus for office automation, most of them are skillful with the fact that 'common' was 44.4%, 'skill' was 42.5%, and 'unskillful' was 13.1% As for the use average hours of the apparatus for office automation per 1 day, the distribution showed that the case under 3-6 hours was 33.1%, the case under 6-9 hours was 28.1%, the case under 3 hours was 30.6%, and the case over 9 hours was 8.1% Main OA business and the use hours for 1 day showed in the order of keeping and retrieval, business of information transmission(162min), business of information transmission(79.3 min), business of document framing(55.5 min), and business of duplication and printing(25.4min). as for the rest during the use of apparatus for affice automation, that I take rest occasion demands the major portion, but that I take after completing the work emerged as 33.8%. Though the subiness gets to be convenient by the use of the apparatus for of office automation, respondents who showed the dissatisfaction about the present OA business emergd high as 78.1%. The work circumstances of each office was good with the fact that the temperature of office was 21.8, noise was average 42.7db, and the illumination was average 364.4 lx, in the light of ANSi/HFS 100 Standard. 3. Sight syptom, musculoskeletal symptom, skin and other symptoms showed the significant difference according to the extent of skillfulness of the apparatus for office automation. All the symptoms exept skin symptom showed the difference according to the use hours of the apparatus for office automation. All the question items exept the sytoms of digestive organs and the rest hours during the apparatus for office automation showed the signicant difference. The question item which showed the signicant difference from the satisfaction degree of present OA business showed the significant difference from all the question item classified into 6 groups. But, age and school career didn't significant difference from the complaint of any self-consciousness symptoms.