• Title/Summary/Keyword: Probiotic effect

Search Result 281, Processing Time 0.026 seconds

The Effect of Probiotics on Microbiology, Health and Performance of Fattening Rabbits

  • Kritas, S.K.;Petridou, E.I.;Fortomaris, P.;Tzika, E.;Arsenos, G.;Koptopoulos, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.9
    • /
    • pp.1312-1317
    • /
    • 2008
  • The objective of the present trial was to determine the effect of a thermostable probiotic containing Bacillus licheniformis and B. subtilis on health and production parameters of fattening rabbits from weaning until slaughter. In a rabbitry with average post-weaning mortality of 5-9%, 1,680 rabbits were supplied with: a) a basic feed, or b) the same basic feed supplemented with probiotic from the 4th day postweaning (41st day of age) up to 88th day of age. Clinical signs, microbiological status and growth performance were recorded for two distinct fattening periods, growing and finishing. A significant decrease in mortality of probiotic-treated rabbits when compared to the controls was observed during the growing and entire fattening periods. Within these periods, E. coli and C. perfringens - but not P. multocida - were isolated at a lower frequency from probiotic-treated rabbits (p<0.05). Compared to the control animals, probiotic-treated rabbits were 54 g and 123 g heavier at the end of the growing and finishing phases, respectively, and had significantly higher average daily gain and better feed conversion ratio (p<0.05).

EFFECT OF DIRECT-FED MICROORGANISMS ON BROILER GROWTH PERFORMANCE AND LITTER AMMONIA LEVEL

  • Chiang, S.H.;Hsieh, W.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.159-162
    • /
    • 1995
  • Broilers were fed diets supplemented with various levels of a probiotic (mixture of the following direct-fed microorganisms: Lactobacillus, Bacillus, and Streptococcus). Growth performance, abdominal fat, excreta, and litter ammonia level were determined. The results showed that birds fed the probiotic-supplemented diets had better weight gain (p < 0.01) and feed conversion (gain:feed;p < 0.12) when compared to the birds fed the unsupplemented diet. No differences in feed intake and abdominal fat were observed among birds fed the different experimental diets. Excreta (p < 0.05) and litter (p < 0.01) ammonia levels were reduced by dietary probiotic supplementation. A dosage of 0.25 g of the probiotic/kg of diet is needed to maiximize growth performance during both the starter and finisher periods. A higher dosage (approximate 0.5 g/kg) is needed to minimize litter ammonia production.

Design of Lactic Acid Bacteria Aiming at Probiotic Culture and Molecular Typing for Phyogenetic Identification (Probiotics용 유산균의 Design과 Molecular Typing에 의한 동정법)

  • Yoon, Sung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.47-60
    • /
    • 2000
  • Over decades of work, the probiotic research has grown rapidly with a number of new cultures, which is claimed a variety of benefit. However, many of the specific effects attributed to the ingestion of probiotics remain convoluted and scientifically unsubstantiated. Accordingly, the scientific community faces a greater challenge and must objectively seek cause and effect relationships for many potential and currently investigated probiotic species. Rational selection and design of probiotics remains an important challenge and will require a solid information about the physiology and genetics of candidate strains relevant to their intestinal roles, functional activities, and interaction of with other resident micro flora. As far as beneficial culture of lactic acid bacteria (LAB) is concerned, simple, cost-effective, and exact identification of candidate strains is of foremost importance among others. Until recently, the relatedness of bacterial isolates has been determined sorely by testing for one or several phenotyphic markers, using methods such as serotyping, phage-typing, biotyping, and so forth. However, there are problems in the use of many of these phenotype-based methods. In contrast, some of newer molecular typing methods involving the analysis of DNA offer many advantages over traditional techniques. These DNA-based methods have the greater discriminatory power than that of phenotypic procedures. This review focuses on the importance and the basis of molecular typing methods along with some considerations on de-sign and selection of probiotic culture for human consumption.

  • PDF

pH and Colour Characteristics of Carcasses of Broilers Fed with Dietary Probiotics and Slaughtered at Different Ages

  • Karaoglu, Mevulut;Aksu, M.I.;Esenbuga, N.;Macit, M.;Durdag, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.605-610
    • /
    • 2006
  • The objective of the present experiment was to determine the effects of slaughtering at different ages and the use of a commercial probiotic (115-Biogallinox) in broiler diets on the color properties of carcasses, during the first 24 h following slaughter. Ross 308 male broiler chickens obtained from a commercial hatchery were raised to either 35 or 42 days of age. Chickens were fed with different levels of probiotic ($P_0$: 0.0%, $P_1$: 0.1% and $P_2$: 0.2%) containing Saccharomyces cerevisiae during the experimental period. At the end of the trial all birds were slaughtered and then stored at $3^{\circ}C$ for 24 h. The pH and skin colour of carcasses were determined 1, 3, 7, 10, 13, 17 and 24 h after slaughter. Although the use of probiotic and post-mortem ageing time affected the pH (p<0.01), it was not affected by slaughter age (35 and 42 days) (p>0.05). The highest pH values occurred in carcasses of broilers fed 0.2% probiotic. The pH values of carcasses decreased with post-mortem ageing time (p<0.01). Main factors (treatment, slaughter age and post-mortem ageing time) had an effect on colour ($L^*$, $a^*$ and $b^*$) values (p<0.01). $L^*$ values of 42d-old slaughter and $P_2$ group were lower than those of 35d-old slaughter and other probiotic groups. The $a^*$ and $b^*$ values of 35d-old slaughter were lower than those of 42d-old slauhgter. The $a^*$ and $b^*$ values increased during post-mortem ageing (p<0.01). It was determined that changing of the colour traits of broiler carcasses was correlated with probiotic, pH and post-mortem ageing time. Also, it was observed that darkness of carcass colour increased as time progressed.

Characterization and ACE Inhibitory Activity of Fermented Milk with Probiotic Lactobacillus plantarum K25 as Analyzed by GC-MS-Based Metabolomics Approach

  • Zhang, Min;Jiang, Yunyun;Cai, Miao;Yang, Zhennai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.903-911
    • /
    • 2020
  • Addition of probiotics to yogurt with desired health benefits is gaining increasing attention. To further understand the effect of probiotic Lactobacillus plantarum on the quality and function of fermented milk, probiotic fermented milk (PFM) made with probiotic L. plantarum K25 and yogurt starter (L. delbrueckii ssp. bulgaricus and Streptococcus thermophilus) was compared with the control fermented milk (FM) made with only the yogurt starter. The probiotic strain was shown to survive well with a viable count of 7.1 ± 0.1 log CFU/g in the PFM sample after 21 days of storage at 4℃. The strain was shown to promote formation of volatiles such as acetoin and 2,3-butanediol with milk fragrance, and it did not cause post-acidification during refrigerated storage. Metabolomics analysis by GC-MS datasets coupled with multivariate statistical analysis showed that addition of L. plantarum K25 increased formation of over 20 metabolites detected in fermented milk, among which γ-aminobutyric acid was the most prominent. Together with several other metabolites with relatively high levels in fermented milk such as glyceric acid, malic acid, succinic acid, glycine, alanine, ribose, and 1,3-dihydroxyacetone, they might play important roles in the probiotic function of L. plantarum K25. Further assay of the bioactivity of the PFM sample showed significant (p < 0.05) increase of ACE inhibitory activity from 22.3% at day 1 to 49.3% at day 21 of the refrigerated storage. Therefore, probiotic L. plantarum K25 could be explored for potential application in functional dairy products.

Probiotic Bacillus amyloliquefaciens B-1895 Improved Growth of Juvenile Trout

  • Elena N. Ponomareva;Marina N. Sorokina;Vadim A. Grigoriev;Mariya Mazanko;Vladimir A. Chistyakov;Dmitry V. Rudoy
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.805-816
    • /
    • 2024
  • The aim of this study was to evaluate a new Bacillus amyloliquefaciens B-1895 probiotic as a feed additive for farmed trout. Final weight, absolute and average daily gain of fish, and average daily growth rate were higher in the group that received the probiotic than in the control group (p<0.05). Moreover, the probiotic-fed trout had more intense growth rates than the control group (higher by 15.7%; p<0.05). A decrease in feed ratio was also observed in the group that received probiotic (25% decrease; p<0.05), indicating more efficient digestion and assimilation of feed. In general, the introduction of probiotic in the feed did not adversely affect the functional status of the fish. In young trout of the control group, when assessing the general chemical composition of the organism in the muscle tissue revealed significantly (p≤0.001) higher level of moisture content by 5.1% and lower by 11.0% dry matter content. In muscle, the protein content was higher by 1.33% (p≤0.001) and fat content by 2.1% (p≤0.001) in experimental fish. Generally, Lactobacilli, Enterococcus, Vibrio, Bacillus, and coliform bacteria were found in the intestinal samples of rainbow trout. Significant reliable difference (p≤0.05) between the samples of experimental and control groups was noted in the content of Bacillus bacteria. In the control group, 5.0±0.4×103 CFU/g was detected, while in the experimental group 8.4±0.8×104 CFU/g. Overall, the data indicate that probiotic bacteria B. amyloliquefaciens B-1895 has no adverse effect on selected microorganisms in the study fish.

Nutrition Practice to Alleviate the Adverse Effects of Stress on Laying Performance, Metabolic Profile and Egg Quality in Peak Producing Hens: II. The Probiotic Supplementation

  • Hayirli, Armagan;Esenbuga, N.;Macit, M.;Yoruk, M.A.;Yildiz, A.;Karaca, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1752-1760
    • /
    • 2005
  • In this experiment, the effects of cage density (CD) and probiotic supplementation (PS) on laying performance, metabolic profile, and egg quality in peak-producing hens were evaluated. After blocking according to the cage location, Lohman layers (n = 180, 46 wks of age) were allocated randomly to two levels of CD (540 vs. 360 $cm^2$/hen) and three levels of PS (0, 0.15, and 0.30%). Probiotic contained Enterococcus faecium culture (10${\times}$10$^9$ cfu/g). Egg production (EP) and feed consumption (FC) were measured daily; egg weight (EW) was measured bi-weekly; BW was measured before and after the experiment; and blood samples were obtained at the end of the experiment. The data were analyzed using two-way ANOVA. Increasing CD decreased FC (125.0 vs. 120.8 g/d, p<0.0001) and FCR (1.93 vs. 1.87, p<0.0001) and did not alter EP, EW, and BW. Increasing level of PS linearly decreased FC (p<0.02) and FCR (p<0.006). Averages were 123.9, 123.2, and 121.6 g/d for FC and 1.91, 1.92, and 1.86 for FCR in hens supplemented with 0, 0.15, and 0.30% probiotic, respectively. Hens placed in high-density cages had greater serum corticosterone concentration than hens placed in normal-density cages (12.8 vs. 11.3 $\mu$g/dL, p<0.04); CD did not affect concentrations of other metabolites. Increasing level of PS linearly increased serum glucose, albumin, and creatine concentrations and quadratically increased total protein, globulin, Ca, and P concentrations. Average concentrations (mg/dL) were 260, 297, and 305 for glucose; 6.28, 8.09, and 7.58 for total protein; 1.98, 2.48, and 2.38 for albumin; 4.30, 5.62, and 5.19 for globulin; 0.40, 0.52, and 0.54 for creatine; 16.0, 16.5, and 16.3 for Ca; and 6.27, 8.14, and 7.17 for P in hens supplemented with 0, 0.15, and 0.30% probiotic, respectively. There was no effect of CD on egg quality. Increasing level of PS linearly improved yolk color (YC) and quadratically increased albumen index (AI) and Haugh unit (HU). The mean values were 9.67, 9.75, and 10.58 for YC; 8.94, 6.93, and 8.72% for AI; and 85.6, 74.9, and 82.9 for HU for hens supplemented with 0, 0.15, and 0.30% probiotic, respectively. There was also CD by PS effect on FC, EP, and serum glucose, total protein, albumin, globulin, creatine, Ca and P concentrations. In conclusion, increased CD partially depressed laying performance and caused stress. Probiotic supplementation improved laying performance and metabolic profile. It also partially alleviated the adverse effects of stress resulting from increased caging density.

Probiotic Effect of Lactobacillus reutri BSA-131 on Piglets (자돈에 투여한 Lactobacillus reutri BSA-131의 생균제 효과)

  • 장영효;김종근;김홍중;김원용;김영배;박용하
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.8-13
    • /
    • 2000
  • A study was carried out to determine the probiotic effect of Lactobacillus reuteri BSA-131 by investigating the growth performance and fecal microbial population of piglets. Five dietary treatment groups, the basal diet (control, BD), basal diet with antibiotics(BA), basal diet with 2$\times$106/g of probiotics (BP6), 2$\times$108/g of probiotics (BP8) and basal diet with antibiotics and 2$\times$108/g probiot-ics(BAP8) were divised. Each dietary treatment group was consisted of 1 month of age piglets(male 13, female 12). Fecal micro-flora, body weights and feed consumption were measured at before, after and stop feeding of probiotics. The results showed that the CFU of fecal Enterobacteriaceae of piglets of the group BA, BP6, BP8 and BAP8, were reduced (P<0.05) compared to control BA. On the contrary, Lactobacillus counts were increased significan시 (P<0.001) in all groups fed probiotics dites, but not antibiotics. Body weight of probiotics treated piglets were improved 5% (p<0.001) in BP6 group than that of control group and antibiotic treated piglets BAP group was 27% (P<0.001) higher than BA group. The amount of feed consumption value of probiotics treated piglets showed 21-30% (P<0.001) lower intake than the control group, whereas antibiotic treated piglets BAP was 20% (P<0.001) higher than BA group. The results showed that body weights and feed to gain ratios were improves 19% when compared to control piglets for groups fed diets probiotic. It is very suggestive that productivity of probiotic piglets would be economical in pig farming.

  • PDF

Inhibitory Effects of Candidate Probiotic Bacteria on the Growth of Fish Pathogenic Bacteria, Streptococcus sp. (Candidate Probiotic Bacteria의 어류병원성 Streptococcus sp. 성장에 대한 억제 효과)

  • Lee, Minyeong;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • For the treatments and protection of bacterial fish disease, many requirements are needed for aquatic probiotics so that they are effective in aquaculture animals but are also harmless to humans. In the present study, among 17 candidate probiotic bacteria (CPB) obtained from the edible part of the shellfish, Bacillus sp. CPB-St (CPB-St) were selected and in vitro evaluated for the possibility as a probiotic strain for the control of fish streptococcosis which frequently occurs in the olive flounder farms. CPB-St showed inhibitory effects on the growth of various fish pathogenic bacteria, Streptococcus sp., S. parauberis, S. iniae, Lactococcus garvieae and L. piscium by the double layer test ranging about 18~26 mm of clear zone. Inhibitory activity of CPB-St to Streptococcus sp. was observed 6 hours after and the growth of Streptococcus sp. was decreased to 8~55 folds in the co-culture of CPB-St with Streptococcus sp.. The safety of CPB-St to fish and survival of CPB-St in the intestine were assessed in the olive flounder, Paralichthys olivaceus. Fish mortality was not observed in artificial infection with CPB-St for 2 weeks. CPB-St was entirely excreted from the stomach and intestine 24 hours after oral injection. This results indicate that CPB-St has potential applications as a probiotic for the control of fish streptococcosis in aquaculture.

Current Status and Prospects for Standards, Regulations, and Detection of Probiotic Yogurt: Review (프로바이오틱 요구르트의 기준, 규정, 검출에 관한 현황 및 전망: 총설)

  • Jung-Whan Chon;Kun-Ho Seo;Tae-Jin Kim;Hye-Young Youn;Seok-Hyeong Kang;Won-Uk Hwang;Hajeong Jeong;Dongkwan Jeong;Kwang-Young Song
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.9-25
    • /
    • 2023
  • Yogurt fermentation is known to be beneficial because it provides a low pH and harsh environment for foodborne pathogens and improves organoleptic properties. Additionally, organic acids produced through fermentation have a good effect on the viscosity and gelling properties of yogurt. Several potential health benefits of probiotic and generally recognized as safe strains have been suggested. Yogurt is the preferred vehicle for delivering probiotics to health-conscious consumers. Therefore, manufacturers of probiotic beverages must comply with the relevant regulations. The development of probiotic yogurt begins with the selection of strains with safety and functional properties of probiotics. The selected probiotic strain should be technically suitable for viability and improve organoleptic quality while maintaining the number of bacteria above the standard value during processing and storage conditions. In addition, the efficacy of probiotic strains contained in yogurt should be investigated, confirmed, and approved according to well-designed clinical trials. Although various methods are used to detect probiotic strains, the recently widely used next generation sequencing method can be actively utilized. In the future, more research should be conducted with the latest methods to identify probiotic functions and accurately detect probiotic strains.