• Title/Summary/Keyword: Probe materials

Search Result 767, Processing Time 0.031 seconds

Characteristics of MEMS Probe Tip with Multi-Rhodium Layer (이중 로듐 층을 갖는 멤스 프로브 팁의 특성)

  • Park, Dong-Gun;Park, Yong-Joon;Lim, Seul-Ki;Kim, Il;Shin, Sang-Hun;Cho, Hyun-Chul;Park, Seung-Pil;Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.2
    • /
    • pp.81-88
    • /
    • 2012
  • Probe tip, which should have not only superior electrical characteristics but also good abrasion resistance for numerous contacts with semiconductor pads to confirm their availability, is essential for MEMS probe card. To obtain good durability of probe tip, it needs thick and crack-free rhodium layer on the tip. However, when the rhodium thickness deposited by electroplating increased, unwanted cracks by high internal stress led to serious problem of MEMS probe tip. This article reported the method of thick Rh deposition with Au buffer layer on the probe tip to overcome the problem of high internal stress and studied mechanical and electrical properties of that. MEMS probe tip with double-Rh layer had good contact resistance and durability during long term touch downs.

Understanding the Structure-Property Relationship in Functional Materials Using 3D Atom Probe Tomography (3차원 원자단층현미경을 활용한 기능성 재료의 구조-특성 관계 해석)

  • Chanwon Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.476-485
    • /
    • 2024
  • Understanding the structure-property relationship in functional materials is crucial as microstructural features such as nano-precipitates, phase boundary, grain boundary segregation, and grain boundary phases play a key role in their functional properties. Atom probe tomography (APT) is an advanced analytical technique that allows for the three-dimensional (3D) mapping of atomic distributions and the precise determination of local chemical compositions in materials. Moreover, it offers sub-nanometer spatial resolution and chemical sensitivity at the tens of parts per million (ppm) level. Owing to its unique capabilities, this technique has been employed to uncover the 3D elemental distributions in a wide range of materials, including alloys, semiconductors, nanomaterials, and even biomaterials. In this paper, various kinds of examples are introduced for elucidating structure-property relationships on functional materials by utilizing the atom probe tomography.

Monitoring Cathodic Shielding and Corrosion under Disbonded Coatings

  • Varela, F.;Tan, M. YJ;Hinton, B.;Forsyth, M.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.109-114
    • /
    • 2017
  • Monitoring of corrosion is in most cases based on simulation of environmental conditions on a large and complex structure such as a buried pipeline using a small probe, and the measurement of thermodynamics and kinetics of corrosion processes occurring on the probe surface. This paper presents a hybrid corrosion monitoring probe designed for simulating deteriorating conditions wrought by disbonded coatings and for measuring current densities and distribution of such densities on a simulated pipeline surface. The concept of the probe was experimentally evaluated using immersion tests under cathodic protection (CP) in high resistivity aqueous solution. Underneath the disbonded area, anodic currents and cathodic currents were carefully measured. Anodic current densities were used to calculate metal loss according to Faraday's law. Calculated corrosion patterns were compared with corrosion damage observed at the surface of the probe after a series of stringent tests. The capability of the probe to measure anodic current densities under CP, without requiring interruption, was demonstrated in high resistivity aqueous solution. The pattern of calculated metal loss correlated well with corrosion products distribution observed at the array surface. Working principles of the probe are explained in terms of electrochemistry.

Materials Compatibility and Structure Optimization of Test Department Probe for Quality Test of Fingerprint Sensor (지문인식센서 품질평가를 위한 검사부 프로브의 소재 적합성과 구조 최적화 연구)

  • Son, Eun-Won;Youn, Ji Won;Kim, Dae Up;Lim, Jae-Won;Kim, Kwang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.73-77
    • /
    • 2017
  • Recently, fingerprint sensors have widely used for personal information security, and require quality evaluation to reduce an error of their recognition rate. Quality of fingerprint sensors is evaluated by variation of their electrical resistance introducing by contacts between a probe tip and a sensor electrode, Investigation on the materials compatability and structure optimization of probe is required to reduce deformation of sensor electrode for repeatability of quality testing. Nickel, steel(SK4), beryllium copper, and phosphor bronze were considered as probe materials, and beryllium copper was the most appropriate for materials of probe tips, considering indentation and contact resistance while being contacted probe tips on electrodes. Probes of an inspection part were manufactured with the single-unit structure for physical damage prevention and parallel processing capability. Inspection repeatability was evaluated by voltage variation of fingerprint sensors when the specific current was applied. A single-unit inspection part with beryllium copper probe tips showed excellent repeatability within ${\pm}0.003V$ of its voltage variation.

Review paper: Application of the Pulsed Eddy Current Technique to Inspect Pipelines of Nuclear Plants

  • Park, D.G.;Angani, C.S.;Kishore, M.B.;Vertesy, G.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.342-347
    • /
    • 2013
  • Local wall thinning in pipelines affects the structural integrity of industries, such as nuclear power plants (NPPs). In the present study, a development of pulsed eddy current (PEC) technology that detects the wall thinning of pipelines covered with insulation is reviewed. The methods and experimental results, which have two kinds of probe with a single and double core, were compared. For this purpose, the single and double core probes having one and two excitation coils have been devised, and the differential probe with two Hall sensors has been fabricated to measure the wall thinning in insulated pipelines. The test sample is a stainless steel having different thickness, laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe is driven by a rectangular current pulse, the difference of two Hall sensors has been measured as a resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The double core probe has better performance to detect the wall thinning covered with insulation; the single core probe can detect the wall thinning up to an insulation thickness of 18 mm, whereas the double probe can detect up to 25 mm. The results show that the double core PEC probe has the potential to detect the wall thinning in an insulated pipeline of the NPPs.

Numerical Modeling of Perturbation Effects of Electrostatic Probe into 2D ICP(inductively coupled plasma) (2D-ICP(inductively coupled plasma)에서 정전 탐침 삽입 시의 플라즈마 수치 계산)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • Numerical modeling is used to investigate the perturbation of a single Langmuir probe (0.2 mm diameter shielded with 6 mm insulator) inserted along the center axis of a cylindrical inductively coupled plasma chamber filled with Ar at 10 mTorr and driven by 13 MHz. The probe was driven by a sine wave. When the probe tip is close to a substrate by 24.5 mm, the probe characteristics was unperturbed. At 10 mm above the substrate, the time averaged electric potential distribution around the tip was severly distorted making a normal probe analysis impossible.

Atom Probe Tomography: A Characterization Method for Three-dimensional Elemental Mapping at the Atomic Scale

  • Choi, Pyuck-Pa;Povstugar, Ivan
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.67-71
    • /
    • 2012
  • The present paper gives an overview about the Atom Probe Tomography technique and its application to powder materials. The preparation of needle-shaped Atom Probe specimens from a single powder particle using focused-ion-beam milling is described. Selected experimental data on mechanically alloyed (and sintered) powder materials are presented, giving insight into the atomic-scale elemental redistribution occurring under powder metallurgical processing.

A study on fast langmuir probe driving circuit for measurement of plasma parameter and its application (플라즈마 파라메타 측정용 고속 langmuir프로브 구동회로 실현 및 적용)

  • 신중흥;고태언;김두환;박정후
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.506-511
    • /
    • 1996
  • This paper deals with an inexpensive, simple and fast Langmuir probe sweeping circuit and its application. This sweeper completes a probe trace in a 1 ms order. Futhermore, the circuit drives a maximum probe voltage of $\pm$30V and has a maximum probe current capability of a few amperes. The plasma parameters are successfully determined using the fast Langmuir probe method.

  • PDF

Dual Core Differential Pulsed Eddy Current Probe to Detect the Wall Thickness Variation in an Insulated Stainless Steel Pipe

  • Angani, C.S.;Park, D.G.;Kim, C.G.;Kollu, P.;Cheong, Y.M.
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.204-208
    • /
    • 2010
  • Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study, a pulsed eddy current (PEC) differential probe with two excitation coils and two Hall-sensors was fabricated to measure the wall thinning in insulated pipelines. A stainless steel test sample was prepared with a thickness that varied from 1 mm to 5 mm and was laminated by plastic insulation to simulate the pipelines in NPPs. The excitation coils in the probe were driven by a rectangular current pulse, the difference of signals from two Hall-sensors was measured as the resultant PEC signal. The peak value of the detected signal is used to describe the wall thinning. The peak value increased as the thickness of the test sample increased. The results were measured at different insulation thicknesses on the sample. Results show that the differential PEC probe has the potential to detect wall thinning in an insulated NPP pipelines.

Application of optimized time domain reflectometry probe for estimating contaminants in saline soil

  • Dongsoo Lee;Jong-Sub Lee;Yong-Hoon Byun;Sang Yeob Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.291-299
    • /
    • 2023
  • Monitoring contaminants in waste landfills on a seabed is important because the leachate affects the marine ecosystem and facility stability. The objective of this study is to optimize a time-domain reflectometry (TDR) probe using different coating materials and several electrodes to estimate contaminants in saline soil. Copper concentrations ranging from 0 mg/L to 10 mg/L were mixed in 3% salinity water to simulate contaminants in the ocean environment. Epoxy, top-coat, and varnish were used as coating materials, and two to seven electrodes were prepared to vary the number and arrangement of the electrodes. Test results showed that the varnish stably captured the increase in copper concentration, while the other coating materials became insensitive or caused leakage current. In addition, a TDR probe with more electrodes exhibited stable and distinct electromagnetic signals. Thus, the TDR probe with seven electrodes coated with varnish was effectively used to estimate contaminants in saline soil.