• 제목/요약/키워드: Probe Transition

Search Result 114, Processing Time 0.049 seconds

Design and Fabrication of the Ka-band Waveguide to Microstrip Transition using Probe structure (프로브 구조를 이용한 Ka 대역 도파관-마이크로스트립 트랜지션의 설계 및 제작)

  • Kwon, Hyuk-Ja;Lee, Sung-Ju;Jang, Ho-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.67-71
    • /
    • 2008
  • We report the waveguide to microstrip transition using probe structure for Ka-band transceiver. The waveguide to microstrip transition is composed of probe, inductive line, ${\lambda}/4$ impedance transformer, and $50{\Omega}$ microstrip line. For design of the transition, we optimized the characteristic impedances and the lengths of the component parts. The fabricated transition exhibits an insertion loss of 1.3 dB and the input/output return losses of below 14 dB between 30 and 40 GHz. The insertion loss of each transition is about $0.5{\sim}0.6dB$, considering the losses in the microstrip line and input/output waveguides.

A Minimalist Model of Single Molecule Spectroscopy in a Dynamic Environment Studied by Metadynamics

  • Oh, In-Rok;Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.980-986
    • /
    • 2012
  • In this paper we develop a minimalist model of single molecule spectroscopy in a dynamic environment. Our model is based upon a lattice system consisting of a probe molecule embedded in an Ising-model like environment. We assume that the probe molecule interacts with the Ising spins via a dipole-dipole potential, and calculate free energy curves and lineshapes of the system. To investigate fluctuation behavior of the system we exploit the metadynamics sampling method. In particular, using the method, we calculate the free energy curve of magnetization of the lattice and that of the transition energy of the probe molecule. Furthermore, we compare efficiencies of three different sampling methods used; unbiased, umbrella, and metadynamics sampling methods. Finally, we explore the lineshape behavior of the probe molecule as the system undergoes a phase transition from a sub-critical and to a super-critical temperature. We show that the transition energy of a probe molecule is broadly distributed due to the heterogeneous, local environments.

Wide Band Microstrip line-to-Rectangular Waveguide Transition Using a Radial Probe for Millimeter-wave Applications (밀리미터파 응용을 위해 Radial 프로브 마이크로 스트립-웨이브 가이드 광대역 천이기)

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.43-47
    • /
    • 2015
  • In this work, a broadband microstrip (MSL) - to - waveguide (WR12) transition has been presented for millimeter-wave module applications. For improvement of a bandwidth, the radial MSL electrical-probe is designed on the low-loss organic dielectric substrate. The designed and tested characteristics of the proposed transition are characterized in terms of an insertion and return loss. Considering the loss contribution of the cable adapter and waveguide transition for the measurement, the proposed transition loss can be analyzed as -1.88 and -2.01 dB per a transition at 70 and 80 GHz, respectively. The bandwidth of the proposed transition for reflection at -10 dB is 26 GHz at all test frequencies from 67 to 95 GHz. Compared to the state-of-the-art results, improvement of 8.3 % is achieved for the operation bandwidth.

A Study on 3-Dimensional Profilometry of Steam Generator Tube Using a New Eddy Current Probe

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.225-235
    • /
    • 2010
  • There are many types of the geometric transitions such as dent, bulge, protrusion, expansion, etc, on the inner and outer surfaces of heat exchanger tubes, steam generator tubes, and condenser tubes of nuclear power plants. Such geometric transition causes a local residual stress in heat exchanger tubes and acts as a structural factor accelerating the evolution of defects, in particular stress corrosion cracks. In the conventional eddy current test methods, the bobbin coil profilometry can provide 2-dimensional geometric information on the variation of the average inner diameter along the tube length, but the 3-dimensional distribution and the quantitative size of a local geometric transition existing in the tube cannot be measured. In this paper, a new eddy current probe, developed for the 3-dimensional profile measurement, is introduced and its superior performance is compared with that from the conventional bobbin coil profilometry for the various types of geometric transition. Also, the accuracy of the probe for the quantitative profile measurement is verified by comparing the results with that from the laser profilometry. It is expected that the new eddy current probe and techniques can be effectively used for an optimization of the tube expansion process, and the management of tubes with geometric transitions in service.

Flow pattern characteristics in vertical two phase flow by PDF and signals from conductance probe (確率密度函數와 電導 Prode信號에 의한 垂直二相流의 流動樣式特性)

  • Son, Byung-Jin;Kim, In-Suhk;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.814-822
    • /
    • 1986
  • Flow patterns and its transitions in vertical two phase flow of air-water isothermal flow are identified objectively by void output signals and moments computed from the Probability Density Function which is associated with the statistical measurement for time average local void fractions using conductance probe. It has been shown that the probe output signals, PDF distributions and its moments are deterministic criteria of flow pattern and transition classification.

Design of 200 GHz Waveguide to Microstrip Transition using Probe Structure (200 GHz 대역 프로브 구조의 구형도파관-마이크로스트립 변환기 설계)

  • Lee, Sang-Jin;Baek, Tae-Jong;Ko, Dong-Sik;Han, Min;Choi, Seok-Gyu;Kim, Jung-Il;Kim, Geun-Ju;Jeon, Seok-Gy;Yoon, Jin-Seob;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.4
    • /
    • pp.47-52
    • /
    • 2012
  • We have designed the waveguide to microstrip transition using a probe structure for the center frequency of 200 GHz transceiver. The waveguide to microstrip transition is composed of probe, taper and microstrip transmission line. For design of the transition, we simulated the lengths and width of the probe and the taper to optimize the center frequency and the bandwidth using HFSS simulation tool from Ansoft. The transition is designed back-to-back structure. From the simulation results, the transition exhibits that insertion loss is below - 0.81 dB and the return loss less than -10 dB in range of 186 ~ 210 GHz.

Nanoscopic Understanding of Phase Transition of Epitaxial VO2 Thin Films (에피택셜 VO2 박막의 상전이에 대한 미시적 이해)

  • Kim, Dong-Wook;Sohn, Ahrum
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.141-146
    • /
    • 2017
  • We investigated configuration of metallic and insulating domains in $VO_2$ thin films, while spanning metal-insulator phase transition. Kelvin probe force microscopy, of which spatial resolution is less than 100 nm, enables us to measure local work function (WF) at the sample surface. The WF of $VO_2$ thin films decreased (increased) as increasing (decreasing) the sample temperature, during the phase transition. The higher and lower WF regions corresponded to the insulating and metallic domains, respectively. The metallic fraction, estimated from the WF maps, well explained the temperature-dependent resistivity based on the percolation model. The WF mapping also showed us how the structural defects affected the phase transition behaviors.

The Analysis of a Coaxial-to-Waveguide Transition Using FDTD with Cylindrical to Rectangular Cell Interpolation Scheme

  • Yu, Kyung-Wan;Kang, Sung-Choon;Kang, Hee-Jin;Choi, Jae-Hoon;Kim, Jin-Dae
    • ETRI Journal
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • We analyze the characteristics of a coaxial-to-waveguide transition based on the finite difference time domain (FDTD) method with the cylindrical to rectangular cell interpolation scheme. The scheme presented in this paper is well suited for the analysis of a microwave device with a probe near waveguide discontinuity because perfect TEM mode can be generated inside the coaxial cable by using the cylindrical cell. The scattering parameters of a designed Ka-band transition are evaluated and compared with those of commercially available software, High Frequency Structure analysis Simulator (HFSS) and measured data. There exists good agreement between the measured and calculated data. In order to prove an accuracy of the interpolation scheme, a coaxial to waveguide transition with a disk-loaded probe is analyzed by the present approach and the results of this analysis are compared with measured data. Comparison shows that our results match very closely to those of measurement and other approaches. The method presented in this paper can be applied to analyze the characteristics of a probe excited cavity, coaxial waveguide T-Junctions, and so on.

  • PDF

Diffusion of Probe Molecule in Small Liquid n-Alkanes: A Molecular Dynamics Simulation Study

  • Yoo, Choong-Do;Kim, Soon-Chul;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1554-1560
    • /
    • 2008
  • The probe diffusion and friction constants of methyl yellow (MY) in liquid n-alkanes of increasing chain length were calculated by equilibrium molecular dynamics (MD) simulations at temperatures of 318, 418, 518 and 618 K. Lennard-Jones particles with masses of 225 and 114 g/mol are modeled for MY. We observed that the diffusion constant of the probe molecule follows a power law dependence on the molecular weight of nalkanes, DMY${\sim}M^{-\gamma}$ well. As the molecular weight of n-alkanes increases, the exponent $\gamma$ shows sharp transitions near n-dotriacontane ($C_{32}$) for the large probe molecule (MY2) at low temperatures of 318 and 418 K. For the small probe molecule (MY1) $D_{MY1}$ in $C_{12}$ to C80 at all the temperatures are always larger than Dself of n-alkanes and longer chain n-alkanes offer a reduced friction relative to the shorter chain n-alkanes, but this reduction in the microscopic friction for MY1 is not large enough to cause a transition in the power law exponent in the log-log plot of DMY1 vs M of n-alkane. For the large probe molecule (MY2) at high temperatures, the situation is very similar to that for MY1. At low temperatures and at low molecular weights of n-alkanes, $D_{MY2}$ are smaller than $D_{self}$ of n-alkanes due to the relatively large molecular size of MY2, and MY2 experiences the full shear viscosity of the medium. As the molecular weight of n-alkane increases, $D_{self}$ of n-alkanes decreases much faster than $D_{MY2}$ and at the higher molecular weights of n-alkane, MY2 diffuses faster than the solvent fluctuations. Therefore there is a large reduction of friction in longer chains compared to the shorter chains, which enhances the diffusion of MY2. The calculated friction constants of MY1 and MY2 in liquid n-alkanes supported these observations. We deem that this is the origin of the so-called“solventoligomer”transition.