• Title/Summary/Keyword: Probability of being in response

Search Result 35, Processing Time 0.019 seconds

Examples of NCS-based Learning Assessment: For the College of Radiotechnology (NCS 기반 학습평가 사례: 전문대학 방사선과 학생들을 대상으로)

  • Park, Jeongkyu
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.407-414
    • /
    • 2019
  • Recently, after the reorganization as the basis of NCS education, various learning methods are being sought for improving the basic occupational ability and job ability required by NCS, and the evaluation method accordingly is urgently needed. The purpose of this study was to evaluate the applicability of meta-cognitive learning and Havruta learning as evaluation cases in order to improve the job skills and basic skills required in the NCS curriculum. As a result, the meta-cognitive learning response sample statistic showed an average of 2.6883 when the pre-meta-cognitive learning questionnaire was a 5-point scale, and an average of 4.2468 after the meta-cognitive learning questionnaire. The correlation coefficient was 0.782 and the significance probability was 0.045. In the case of the Havruta learning correspondence sample statistic, the average of 3.1515 when the preliminary Havruta learning questionnaire was a 5 point scale and the average of the post-Havruta learning questionnaire was 4.3853, which was improved by 1.23 points. The correlation coefficient was 0.631 and the significance probability was 0.049. Meta-cognitive learning and Havruta learning were found to be correlated. The mean of meta cognition was 3.4675 and the mean of Havruta was 3.7684. Metacognitive learning and Havruta learning were -0.042 And there was no statistically significant difference. Therefore, the learning method to improve the job ability should be applied considering the characteristics of the subject.

Factors Associated with Burnout of Nurses Working for Cancer Patients (말기 암 환자 간호사의 직무소진 관련 요인 분석)

  • Leou, Chung-Soon;Kim, Kwang-Kee;Kim, Jeoung-Hee
    • Journal of Hospice and Palliative Care
    • /
    • v.8 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • Purpose: The purpose of this study is to examine the factors surrounding burnout of nurses caring for cancer patients. Methods: The sample of this study was conveniently selected among nurses who had hospice care experiences working in General Hospitals located in Seoul. This study was conducted by a self-administered questionnaire. Two hundred forty four questionnaires were retrieved and the response rate was 81.3%. The period of data collection was from February 25th to March 5th in 1994. Mean, standard deviation, T-test ANOVA, and multiple regression analysis were performed for statistical analysis. Results: The data showed that respondents reported to have burnout as many as 2.71 out of a 5.0 score. Bivariate analyses indicated that those who had hospice education reported to have a lower burnout than those without hospice education. Multivariate regression analyses revealed factors associated with burnout the nurses have had. They include being a Christian, higher job satisfaction, and experiences of hospice education. Hospice education reducing burnout for the nurses was observed by hierarchial multiple regression analyses, after controlling out the effect of coping methods, sociodemographic characteristics, job satisfaction, and job-related stresses on experience of burnout. This observation was not hue for physical and psychological burnout but for burnout in general and emotional one. But this was not confirmed among the nurses with type A personality. Conclusion: The findings of this study have a weakness in generalizability due to the sampling methodology used in this study. However, for the better hospice care further research with a probability sampling method are necessary.

  • PDF

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Differential Effects of Recovery Efforts on Products Attitudes (제품태도에 대한 회복노력의 차별적 효과)

  • Kim, Cheon-GIl;Choi, Jung-Mi
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.1
    • /
    • pp.33-58
    • /
    • 2008
  • Previous research has presupposed that the evaluation of consumer who received any recovery after experiencing product failure should be better than the evaluation of consumer who did not receive any recovery. The major purposes of this article are to examine impacts of product defect failures rather than service failures, and to explore effects of recovery on postrecovery product attitudes. First, this article deals with the occurrence of severe and unsevere failure and corresponding service recovery toward tangible products rather than intangible services. Contrary to intangible services, purchase and usage are separable for tangible products. This difference makes it clear that executing an recovery strategy toward tangible products is not plausible right after consumers find out product failures. The consumers may think about backgrounds and causes for the unpleasant events during the time gap between product failure and recovery. The deliberation may dilutes positive effects of recovery efforts. The recovery strategies which are provided to consumers experiencing product failures can be classified into three types. A recovery strategy can be implemented to provide consumers with a new product replacing the old defective product, a complimentary product for free, a discount at the time of the failure incident, or a coupon that can be used on the next visit. This strategy is defined as "a rewarding effort." Meanwhile a product failure may arise in exchange for its benefit. Then the product provider can suggest a detail explanation that the defect is hard to escape since it relates highly to the specific advantage to the product. The strategy may be called as "a strengthening effort." Another possible strategy is to recover negative attitude toward own brand by giving prominence to the disadvantages of a competing brand rather than the advantages of its own brand. The strategy is reflected as "a weakening effort." This paper emphasizes that, in order to confirm its effectiveness, a recovery strategy should be compared to being nothing done in response to the product failure. So the three types of recovery efforts is discussed in comparison to the situation involving no recovery effort. The strengthening strategy is to claim high relatedness of the product failure with another advantage, and expects the two-sidedness to ease consumers' complaints. The weakening strategy is to emphasize non-aversiveness of product failure, even if consumers choose another competitive brand. The two strategies can be effective in restoring to the original state, by providing plausible motives to accept the condition of product failure or by informing consumers of non-responsibility in the failure case. However the two may be less effective strategies than the rewarding strategy, since it tries to take care of the rehabilitation needs of consumers. Especially, the relative effect between the strengthening effort and the weakening effort may differ in terms of the severity of the product failure. A consumer who realizes a highly severe failure is likely to attach importance to the property which caused the failure. This implies that the strengthening effort would be less effective under the condition of high product severity. Meanwhile, the failing property is not diagnostic information in the condition of low failure severity. Consumers would not pay attention to non-diagnostic information, and with which they are not likely to change their attitudes. This implies that the strengthening effort would be more effective under the condition of low product severity. A 2 (product failure severity: high or low) X 4 (recovery strategies: rewarding, strengthening, weakening, or doing nothing) between-subjects design was employed. The particular levels of product failure severity and the types of recovery strategies were determined after a series of expert interviews. The dependent variable was product attitude after the recovery effort was provided. Subjects were 284 consumers who had an experience of cosmetics. Subjects were first given a product failure scenario and were asked to rate the comprehensibility of the failure scenario, the probability of raising complaints against the failure, and the subjective severity of the failure. After a recovery scenario was presented, its comprehensibility and overall evaluation were measured. The subjects assigned to the condition of no recovery effort were exposed to a short news article on the cosmetic industry. Next, subjects answered filler questions: 42 items of the need for cognitive closure and 16 items of need-to-evaluate. In the succeeding page a subject's product attitude was measured on an five-item, six-point scale, and a subject's repurchase intention on an three-item, six-point scale. After demographic variables of age and sex were asked, ten items of the subject's objective knowledge was checked. The results showed that the subjects formed more favorable evaluations after receiving rewarding efforts than after receiving either strengthening or weakening efforts. This is consistent with Hoffman, Kelley, and Rotalsky (1995) in that a tangible service recovery could be more effective that intangible efforts. Strengthening and weakening efforts also were effective compared to no recovery effort. So we found that generally any recovery increased products attitudes. The results hint us that a recovery strategy such as strengthening or weakening efforts, although it does not contain a specific reward, may have an effect on consumers experiencing severe unsatisfaction and strong complaint. Meanwhile, strengthening and weakening efforts were not expected to increase product attitudes under the condition of low severity of product failure. We can conclude that only a physical recovery effort may be recognized favorably as a firm's willingness to recover its fault by consumers experiencing low involvements. Results of the present experiment are explained in terms of the attribution theory. This article has a limitation that it utilized fictitious scenarios. Future research deserves to test a realistic effect of recovery for actual consumers. Recovery involves a direct, firsthand experience of ex-users. Recovery does not apply to non-users. The experience of receiving recovery efforts can be relatively more salient and accessible for the ex-users than for non-users. A recovery effort might be more likely to improve product attitude for the ex-users than for non-users. Also the present experiment did not include consumers who did not have an experience of the products and who did not perceive the occurrence of product failure. For the non-users and the ignorant consumers, the recovery efforts might lead to decreased product attitude and purchase intention. This is because the recovery trials may give an opportunity for them to notice the product failure.

  • PDF