• Title/Summary/Keyword: Probability of Symbol Error Rate

Search Result 45, Processing Time 0.022 seconds

Performance Analysis of Follower Noise Jamming Considering Tracking Parameters against Frequency Hopping Signals (추적 파라미터를 고려한 주파수 도약신호 추적 잡음 재밍의 성능 분석)

  • Lee, Chi-Ho;Jo, Sung-Jin;Ryu, Jeong-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.67-75
    • /
    • 2008
  • In this paper, we analyze the performance of Follower Noise Jamming(FNJ) considering three practical tracking parameters such as tracking bandwidth, tracking time and tracking success probability. The performance of FNJ is compared with that of Partial-Band Noise Jamming(PBNJ) in terms of Symbol Error Rate(SER) at the communication receiver under the assumed typical operation model. It is observed that the performance of FNJ is non-linearly dependent on the tracking bandwidth, the tracking time and the tracking success probability. As we can easily expect, it is also observed that the performance of FNJ is better than that of the PBNJ. Finally, it is shown that, for a fixed tracking bandwidth, the combinations of the required tracking time and the tracking success probability which satisfy a certain required SER.

Performance Analysis of Dual-Hop MBST-ADF Relay Networks Over Quasi-Static Rayleigh Fading Channels

  • Kim, Min-Chan;Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.18-27
    • /
    • 2018
  • The objective of this study was to derive approximate closed-form error rates for M-ary burst symbol transmission (MBST) of dual-hop adaptive decode-and-forward (ADF) cooperative relay systems over quasi-static Rayleigh fading channels. Within a burst, there are pilot symbols and data symbols. Pilot symbols are used for channel estimation schemes and each relay node's transmission mode selection schemes. At first, our focus was on ADF relay systems' error-events at relay nodes. Each event's occurrence probability and probability density function (PDF) were then derived. With error-event based approach, we derived a tractable form of PDF for combined signal-to-noise ratio (SNR). Averaged error rates were then derived as approximate expressions for arbitrary link SNR with different modulation orders and numbers of relays. Its accuracy was verified by comparison with simulation results.

Transmission Performance Analysis for OTAR in LINK16 communication system (LINK16 통신체계에서 무선 키 갱신을 위한 전송성능 분석)

  • Hong, Jin-Keun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.384-388
    • /
    • 2004
  • In this paper, we analyses transmission performance of synchronization pattern for over the air rekeying in aerial tactical link of LINK16, when it is given by symbol error rate, in respect of pattern detection probability and false alarm probability.

  • PDF

Performance analysis of OFDM on the multi-path fading channel (다경로 페이딩 채널에서 OFDM의 성능분석)

  • 정영모;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2923-2931
    • /
    • 1996
  • In this paper, the symbol error probability for orthogonal frequency division multiplexing (OFDM) in the multipath fading environment is obtained analytically. In the analysis, OFDM signals with and without the guard interval are considered, and the two-ray fading model is used for the multi-path fading channel. From the analysis results, it is found that the adjacent subchannel interfernce increases the symbol error rate when the guard interval is not employed or shorter than the length of the delay. It is also shown that the adjacent subchannel interference is a Gaussian random variable and its variance depends on the subchannel location and the number of subchannels. Finally, it is found that the variance of the subchannel interference also increases as the power of the signal increases for the OFDM with insufficient guard interval, yieldin an irreducible error at high signal to noise ratio.

  • PDF

Dual-Hop Amplify-and-Forward Multi-Relay Maximum Ratio Transmission

  • Erdogan, Eylem;Gucluoglu, Tansal
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • In this paper, the performance of dual-hop multi-relay maximum ratio transmission (MRT) over Rayleigh flat fading channels is studied with both conventional (all relays participate the transmission) and opportunistic (best relay is selected to maximize the received signal-to-noise ratio (SNR)) relaying. Performance analysis starts with the derivation of the probability density function, cumulative distribution function and moment generating function of the SNR. Then, both approximate and asymptotic expressions of symbol error rate (SER) and outage probability are derived for arbitrary numbers of antennas and relays. With the help of asymptotic SER and outage probability, diversity and array gains are obtained. In addition, impact of imperfect channel estimations is investigated and optimum power allocation factors for source and relay are calculated. Our analytical findings are validated by numerical examples which indicate that multi-relay MRT can be a low complexity and reliable option in cooperative networks.

BER Analysis of Coherent Free-Space Optical Systems with Pulsed Noise Jamming (코히런트 무선 광통신 시스템에서 펄스 재밍으로 인한 비트오류율 분석)

  • Park, Hwi-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.304-306
    • /
    • 2016
  • In this letter, we investigate the performance of coherent free-space optical(FSO) systems under pulsed noise jamming conditions. In particular, we derive the average bit error probability of the coherent FSO systems with the pulsed noise jamming in a closed-form. Also, we derive the optimal fraction of symbol time of the jammer. We confirm the derived average error probability expressions by the exactly matching Monte-Carlo simulation results.

Further Analysis on Selective Diversity Reception for Detection of M-ary Signals Over Nakagami Fading Channels

  • Na, Seung-Gwan;Kim, Chang-Hwan;Chin, Yong-Ohk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1045-1052
    • /
    • 2005
  • The symbol error probability of M-ary PSK (MPSK) and QAM (MQAM) systems using the branch with the largest signal-to-noise ratio (SNR) at the output of L-branch selection combining (SC) in frequency-nonselective slow Nakagami fading channels with an additive white Gaussian noise (AWGN) is derived theoretically For integer values of the Nakagami fading parameter m, the general formula for evaluating symbol error rate (SER) of MPSK signals in the independent branch diversity system comprises numerical analyses with the integral-form expressions. An exact closed-form SER performance of MQAM signals under the effect of SC diversity via numerical integration is presented. These performance evaluations allow designers to determine M-ary modulation methods for Nakagami fading channels.

Performance of Multiple-Relay Cooperative Communication Networks under Soft-Decision-and-Forward Protocol (연판정 후 전송 방식을 적용한 다중 안테나 다중 릴레이 협동통신망의 성능 분석)

  • Song, Kyoung-Young;No, Jong-Seon;Kim, Tae-Guen;Sung, Joon-Hyun;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5A
    • /
    • pp.431-439
    • /
    • 2010
  • In this paper, multiple-relay cooperative communication network with multiple antennas is considered. Applying the soft-decision-and-forward protocol to this system, pairwise error probability(PEP) is derived and then symbol error rate(SER) is also calculated. However, in general, signals are transmitted through the orthogonal channel in the multiple-relay cooperative communication network for the prevention of interference, which is inefficient in terms of the throughput. For the improvement of throughput, the relay selection is considered, where the relay having the maximum instantaneous end-to-end signal-to-noise ratio is chosen. Performance of the system is analyzed in terms of PEP and SER. As the number of the relay increases, relay selection method outperforms the conventional multiple-relay transmission system where all relays participate in the second time slot.

On the Performance of the Block-Based Selective OFDM Decode-and-Forward Relaying Scheme for 4G Mobile Communication Systems

  • Yang, Wendong;Cai, Yueming
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • In this paper, we propose a block-based selective orthogonal frequency division multiplexing (OFDM) decode-and-forward relaying scheme for 4G mobile communication systems. In the scheme, an OFDM symbol is divided into blocks and one relay is selected for each block. Theoretical outage performance and error performance are analyzed and evaluated. A unified outage expression is given for our scheme and the other two schemes and the lower bound of the bit error rate of the three schemes is also obtained. The effect of the coherence bandwidth on the proposed scheme is also investigated. Monte Carlo simulations are carried out to validate our analysis. The scheme can obtain a good tradeoff between complexity and performance and can be used in future 4G mobile communication systems.

Energy Savings in OFDM Systems through Cooperative Relaying

  • Khuong, Ho Van;Kong, Hyung-Yun
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • Energy savings in orthogonal frequency division multiplexing (OFDM) systems is an active research area. In order to achieve a solution, we propose a new cooperative relaying scheme operated on a per subcarrier basis. This scheme improves the bit error rate (BER) performance of the conventional signal-to-noise ratio (SNR)-based selection relaying scheme by substituting SNR with symbol error probability (SEP) to evaluate the received signal quality at the relay more reliably. Since the cooperative relaying provides spatial diversity gain for each subcarrier, thus statistically enhancing the reliability of subcarriers at the destination, the total number of lost subcarriers due to deep fading is reduced. In other words, cooperative relaying can alleviate error symbols in a codeword so that the error correction capability of forward error correction codes can be fully exploited to improve the BER performance (or save transmission energy at a target BER). Monte-Carlo simulations validate the proposed approach.

  • PDF