• 제목/요약/키워드: Probability method

검색결과 4,630건 처리시간 0.031초

Stochastic Project Scheduling Simulation System (SPSS III)

  • Lee Dong-Eun
    • 한국건설관리학회논문집
    • /
    • 제6권1호
    • /
    • pp.73-79
    • /
    • 2005
  • This paper, introduces a Stochastic Project Scheduling Simulation system (SPSS III) developed by the author to predict a project completion probability in a certain time. The system integrates deterministic CPM, probabilistic PERT, and stochastic Discrete Event Simulation (DES) scheduling methods into one system. It implements automated statistical analysis methods for computing the minimum number of simulation runs, the significance of the difference between independent simulations, and the confidence interval for the mean project duration as well as sensitivity analysis method in What-if analyzer component. The SPSS 111 gives the several benefits to researchers in that it (1) complements PERT and Monte Carlo simulation by using stochastic activity durations via a web based JAVA simulation over the Internet, (2) provides a way to model a project network having different probability distribution functions, (3) implements statistical analyses method which enable to produce a reliable prediction of the probability of completing a project in a specified time, and (4) allows researchers to compare the outcome of CPM, PERT and DES under different variability or skewness in the activity duration data.

관개조직의 수명기간 신뢰성 해석 (Lifetime Reliability Analysis of Irrigation System)

  • Kim Han-Joong;Lee Jeong-Jae;Im Sang-Joon
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.35-44
    • /
    • 2003
  • A system reliability method is proposed to decide reliable serviceability of agricultural irrigation system. Even though reliability method is applied to real engineering situations involving actual life environments and maintaining costs, a number of Issues arise as a modeling and analysis level. This article use concepts that can be described the probability of failure with time variant and series-parallel system reliability analysis model. A proposed method use survivor function that can simulate a time-variant performance function for a lifetime before it is required essential maintenance or replacement to define a target probability of failure in agricultural irrigation canal. In the further study, it is required a relationship between a state of probability of failure and current serviceability to make the optimum repair strategy to maintain appropriate serviceability of an irrigation system.

골조 파이프 구조물의 최적신뢰성 설계 (Reliability-Based Optimum Design for Tubular Frame Structures)

  • 백점기
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.95-105
    • /
    • 1988
  • This paper describes the development of a reliability-based optimum design technique for such three dimensional tubular frames as off shore structures. The objective function is formulated for the structural weight. Constraints that probability of failure for the critical sections does not exceed the allowable probability of failure are set up. In the evaluation of the probability of failure, fatigue as well as buckling and plasticity failure are taken into account and the mean-value first-order second-moment method(MVFOSM) is applied for its calculation. In order to reduce the computing time required for the repeated structural analysis in the optimization process, reanalysis method is also applied. Application to two and three dimensional simple frame structures is performed. The influence of material properties, external forces, allowable failure probabilities and interaction between external forces on the optimum design is investigated.

  • PDF

Mixing matrix estimation method for dual-channel time-frequency overlapped signals based on interval probability

  • Liu, Zhipeng;Li, Lichun;Zheng, Ziru
    • ETRI Journal
    • /
    • 제41권5호
    • /
    • pp.658-669
    • /
    • 2019
  • For dual-channel time-frequency (TF) overlapped signals with low sparsity in underdetermined blind source separation (UBSS), this paper proposes an effective method based on interval probability to estimate and expand the types of mixing matrices. First, the detection of TF single-source points (TF-SSP) is used to improve the TF sparsity of each source. For more distinguishability, as the ratios of the coefficients from different columns of the mixing matrix are close, a local peak-detection mechanism based on interval probability (LPIP) is proposed. LPIP utilizes uniform subintervals to optimize and classify the TF coefficient ratios of the detected TF-SSP effectively in the case of a high level of TF overlap among sources and reduces the TF interference points and redundant signal features greatly to enhance the estimation accuracy. The simulation results show that under both noiseless and noisy cases, the proposed method performs better than the selected mainstream traditional methods, has good robustness, and has low algorithm complexity.

Estimating causal effect of multi-valued treatment from observational survival data

  • Kim, Bongseong;Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제27권6호
    • /
    • pp.675-688
    • /
    • 2020
  • In survival analysis of observational data, the inverse probability weighting method and the Cox proportional hazards model are widely used when estimating the causal effects of multiple-valued treatment. In this paper, the two kinds of weights have been examined in the inverse probability weighting method. We explain the reason why the stabilized weight is more appropriate when an inverse probability weighting method using the generalized propensity score is applied. We also emphasize that a marginal hazard ratio and the conditional hazard ratio should be distinguished when defining the hazard ratio as a treatment effect under the Cox proportional hazards model. A simulation study based on real data is conducted to provide concrete numerical evidence.

Concept Drift Based on CNN Probability Vector in Data Stream Environment

  • Kim, Tae Yeun;Bae, Sang Hyun
    • 통합자연과학논문집
    • /
    • 제13권4호
    • /
    • pp.147-151
    • /
    • 2020
  • In this paper, we propose a method to detect concept drift by applying Convolutional Neural Network (CNN) in a data stream environment. Since the conventional method compares only the final output value of the CNN and detects it as a concept drift if there is a difference, there is a problem in that the actual input value of the data stream reacts sensitively even if there is no significant difference and is incorrectly detected as a concept drift. Therefore, in this paper, in order to reduce such errors, not only the output value of CNN but also the probability vector are used. First, the data entered into the data stream is patterned to learn from the neural network model, and the difference between the output value and probability vector of the current data and the historical data of these learned neural network models is compared to detect the concept drift. The proposed method confirmed that only CNN output values could be used to reduce detection errors compared to how concept drift were detected.

PROBABILISTIC MEASUREMENT OF RISK ASSOCIATED WITH INITIAL COST ESTIMATES

  • Seokyon Hwang
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.488-493
    • /
    • 2013
  • Accurate initial cost estimates are essential to effective management of construction projects where many decisions are made in the course of project management by referencing the estimates. In practice, the initial estimates are frequently derived from historical actual cost data, for which standard distribution-based techniques are widely applied in the construction industry to account for risk associated with the estimates. This approach assumes the same probability distribution of estimate errors for any selected estimates. This assumption, however, is not always satisfied. In order to account for the probabilistic nature of estimate errors, an alternative method for measuring the risk associated with a selected initial estimate is developed by applying the Bayesian probability approach. An application example include demonstrates how the method is implemented. A hypothesis test is conducted to reveal the robustness of the Bayesian probability model. The method is envisioned to effectively complement cost estimating methods that are currently in use by providing benefits as follows: (1) it effectively accounts for the probabilistic nature of errors in estimates; (2) it is easy to implement by using historical estimates and actual costs that are readily available in most construction companies; and (3) it minimizes subjective judgment by using quantitative data only.

  • PDF

Calculation of Life-Time Death Probability due Malignant Tumors Based on a Sampling Survey Area in China

  • Yuan, Ping;Chen, Tie-Hui;Chen, Zhong-Wu;Lin, Xiu-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권10호
    • /
    • pp.4307-4309
    • /
    • 2014
  • Purpose: To calculate the probability of one person's life-time death caused by a malignant tumor and provide theoretical basis for cancer prevention. Materials and Methods: The probability of one person's death caused by a tumor was calculated by a probability additive formula and based on an abridged life table. All data for age-specific mortality were from the third retrospective investigation of death cause in China. Results: The probability of one person's death caused by malignant tumor was 18.7% calculated by the probability additive formula. On the same way, the life-time death probability caused by lung cancer, gastric cancer, liver cancer, esophageal cancer, colorectal and anal cancer were 4.47%, 3.62%, 3.25%, 2.25%, 1.11%, respectively. Conclusions: Malignant tumor is still the main cause of death in one's life time and the most common causes of cancer death were lung, gastric, liver, esophageal, colorectal and anal cancers. Targeted forms of cancer prevention and treatment strategies should be worked out to improve people's health and prolong life in China. The probability additive formula is a more scientific and objective method to calculate the probability of one person's life-time death than cumulative death probability.

통계적 분석방법을 이용한 복합화력 발전설비의 평균수명 계산 및 고장확률 예측 (Mean Life Assessment and Prediction of the Failure Probability of Combustion Turbine Generating Unit with Data Analytic Method Based on Aging Failure Data)

  • 이성훈;이승혁;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권10호
    • /
    • pp.480-486
    • /
    • 2005
  • This paper proposes a method to consider an aging failure probability and survival probability of power system components, though only aging failure probability has been considered in existing mean life calculation. The estimates of the mean and its standard deviation is calculated by using Weibull distribution, and each estimated parameters is obtained from Data Analytic Method (Type H Censoring). The parameter estimation using Data Analytic Method is simpler and faster than the traditional calculation method using gradient descent algorithm. This paper shows calculation procedure of the mean life and its standard deviation by the proposed method and illustrates that the estimated results are close enough to real historical data of combustion turbine generating units in Korean systems. Also, this paper shows the calculation procedures of a probabilistic failure prediction through a stochastic data analysis. Consequently, the proposed methods would be likely to permit that the new deregulated environment forces utilities to reduce overall costs while maintaining an are-related reliability index.

Fatigue reliability analysis of steel bridge welding member by fracture mechanics method

  • Park, Yeon-Soo;Han, Suk-Yeol;Suh, Byoung-Chul
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.347-359
    • /
    • 2005
  • This paper attempts to develop the analytical model of estimating the fatigue damage using a linear elastic fracture mechanics method. The stress history on a welding member, when a truck passed over a bridge, was defined as a block loading and the crack closure theory was used. These theories explain the influence of a load on a structure. This study undertook an analysis of the stress range frequency considering both dead load stress and crack opening stress. A probability method applied to stress range frequency distribution and the probability distribution parameters of it was obtained by Maximum likelihood Method and Determinant. Monte Carlo Simulation which generates a probability variants (stress range) output failure block loadings. The probability distribution of failure block loadings was acquired by Maximum likelihood Method and Determinant. This can calculate the fatigue reliability preventing the fatigue failure of a welding member. The failure block loading divided by the average daily truck traffic is a predictive remaining life by a day. Fatigue reliability analysis was carried out for the welding member of the bottom flange of a cross beam and the vertical stiffener of a steel box bridge by the proposed model. Results showed that the primary factor effecting failure time was crack opening stress. It was important to decide the crack opening stress for using the proposed model. Also according to the 50% reliability and 90%, 99.9% failure times were indicated.