• Title/Summary/Keyword: Probability Rainfall

Search Result 340, Processing Time 0.02 seconds

Comparison of Discharge Characteristics of NPS Pollutant Loads from Urban, Agricultural and Forestry Watersheds (도시, 농촌 및 임야유역으로부터 배출되는 비점원 오염부하의 특성비교)

  • Yur, Joonghyun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.184-189
    • /
    • 2005
  • Impacts of non-point source pollution on water quality are well known. In this paper, effects of land use, precipitation characteristics, discharge characteristics on non-point source pollutant loadings at urban, agricultural and forestry watersheds were discussed. Rainfall runoffs from fifteen rainfall events were sampled and analysed at two urban watersheds, one rural watershed, and one forestry watershed. EMCs (Event Mean Concentration) were calculated based on monitored flow rates and concentrations. Statistical analysis carried out with runoff loadings and affecting variables indicated that runoff loadings are weakly correlated with the rainfall intensity and the dry days before rainfall events while showed no correlations with rainfall depth nor runoff quantity. By comparing EMCs between study watersheds on log-normal cumulative probability scale, EMCs ranking were in the descending order of urban watershed>agricultural watershed>forestry watershed for SS, TCOD, TN, and TP.

An intercomparison of GMS image data and observed rainfall data (GMS 영상자료와 관측강수량 자료의 비교)

  • 서애숙;이미선;김금란;이희훈
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 1994
  • The purpose of this study is to find the relationship between GMS image data and hourly observed rainfalls data. Heavy rainfall cases over South Korea on 10th September 1990 and on 29th July 1993 were selected for studying of the relationship between the image data and reinfalls. First, image data were converted to TBB(Temperature of Black Body) and albedo and then these values were extracted for the pixels closest to the surface observation station to correlate with the rainfall data. Horizontal distribution of TBB and albedo tells roughly rainfall regions. The correlation between rainfall and TBB is found to be very low in quantitative analysis. The weak relationship between the brighter albedo and the higher rainfall probability is observed. This study suggests that the TBB values are useful in classifying rain areas and for heavy rainfalls the albedo values are more useful than the TBB. Low linear correlation between the fields may be attributed to the neglect of cloud types in this study.

Bivariate Frequency Analysis of Rainfall using Copula Model (Copula 모형을 이용한 이변량 강우빈도해석)

  • Joo, Kyung-Won;Shin, Ju-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.827-837
    • /
    • 2012
  • The estimation of the rainfall quantile is of great importance in designing hydrologic structures. Conventionally, the rainfall quantile is estimated by univariate frequency analysis with an appropriate probability distribution. There is a limitation in which duration of rainfall is restrictive. To overcome this limitation, bivariate frequency analysis by using 3 copula models is performed in this study. Annual maximum rainfall events in 5 stations are used for frequency analysis and rainfall depth and duration are used as random variables. Gumbel (GUM), generalized logistic (GLO) distributions are applied for rainfall depth and generalized extreme value (GEV), GUM, GLO distributions are applied for rainfall duration. Copula models used in this study are Frank, Joe, and Gumbel-Hougaard models. Maximum pseudo-likelihood estimation method is used to estimate the parameter of copula, and the method of probability weighted moments is used to estimate the parameters of marginal distributions. Rainfall quantile from this procedure is compared with various marginal distributions and copula models. As a result, in change of marginal distribution, distribution of duration does not significantly affect on rainfall quantile. There are slight differences depending on the distribution of rainfall depth. In the case which the marginal distribution of rainfall depth is GUM, there is more significantly increasing along the return period than GLO. Comparing with rainfall quantiles from each copula model, Joe and Gumbel-Hougaard models show similar trend while Frank model shows rapidly increasing trend with increment of return period.

Establishment of Inundation Probability DB for Forecasting the Farmland Inundation Risk Using Weather Forecast Data (기상예보 기반 농촌유역 침수 위험도 예보를 위한 침수 확률 DB 구축)

  • Kim, Si-Nae;Jun, Sang-Min;Lee, Hyun-Ji;Hwang, Soon-Ho;Choi, Soon-Kun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.33-43
    • /
    • 2020
  • In order to reduce damage from farmland inundation caused by recent climate change, it is necessary to predict the risk of farmland inundation accurately. Inundation modeling should be performed by considering multiple time distributions of possible rainfalls, as digital forecasts of Korea Meteorological Administration is provided on a six-hour basis. As building multiple inputs and creating inundation models take a lot of time, it is necessary to shorten the forecast time by building a data base (DB) of farmland inundation probability. Therefore, the objective of this study is to establish a DB of farmland inundation probability in accordance with forecasted rainfalls. In this study, historical data of the digital forecasts was collected and used for time division. Inundation modeling was performed 100 times for each rainfall event. Time disaggregation of forecasted rainfall was performed by applying the Multiplicative Random Cascade (MRC) model, which uses consistency of fractal characteristics to six-hour rainfall data. To analyze the inundation of farmland, the river level was simulated using the Hydrologic Engineering Center - River Analysis System (HEC-RAS). The level of farmland was calculated by applying a simulation technique based on the water balance equation. The inundation probability was calculated by extracting the number of inundation occurrences out of the total number of simulations, and the results were stored in the DB of farmland inundation probability. The results of this study can be used to quickly predict the risk of farmland inundation, and to prepare measures to reduce damage from inundation.

Radar Rainfall Estimation Using Window Probability Matching Method : 1. Establishment of Ze-R Relationship for Kwanak Mt, DWSR-88C at Summer, 1998 (WPMM 방법을 이용한 레이더 강수량 추정 : 1. 1998년 여름철 관악산 DWSR-88C를 위한 Ze-R 관계식 산출)

  • Kim, Hyo-Gyeong;Lee, Dong-In;Yu, Cheol-Hwan;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.25-36
    • /
    • 2002
  • Window Probability Matching Method(WPMM) is achieved by matching identical probability density of rain intensities and radar reflectivities taken only from small window centered about the gage. The equation of $Z_{e}-R$ relationship is obtained and compared with data between a DWSR-88C radar and high density rain gage networks within 150km from radar site in summer season, 1998. The probability density of radar effective reflectivity is distributed with high frequency near 15dBZ. The frequency distribution of rain intensities shows that rain intensity is lower than 10mm/hr in most part of radar coverage area. As the result of $Z_{e}-R$ relationship using WPMM, curved line has shown to the log scale spatially and it can be explained more flexible than any straight-line power laws at the transformation to the rainfall amount from $Z_e$ value. During 3 months, total radar cumulative rainfall amount estimated by $Z=200R^{1.6}$ and WPMM relationships are 44 and 80 percentages of total raingage amount, respectively. Therefore, $Z_{e}-R$ relationships by WPMM may be widely needed a statistical method for the computation of accumulated precipitation.

A Studay on the Rainfall and Drought Days in Kyupgpook Area (경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析))

  • Suh, Seung Duk;Jeon, Kuk Jin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.5
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

The Application Assessment of Future Design Rainfall Estimation Method Using Scale Properties (스케일 특성을 이용한 미래 확률강우량 산정기법의 적용성 평가)

  • Lee, Moon-Hwan;Shin, Sang-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.253-262
    • /
    • 2012
  • The objectives of this study are to suggest the method for estimation of sub-daily extreme rainfall under climate change using scale properties and to assess the application in the 6 major weather stations including Seoul site. First, the proposed method was assessed by past observations. As the results, absolute relative errors of probability rainfall quantiles estimated by frequency analysis and scale property method show approximately 10% in the all durations. And as the result of application climate scenario, absolute relative errors of rainfall quantiles between two method show approximately 20%. From the results, the scale property method on this study will be derive as the reliable results.

A Study on Estimation of Target Precipitation in Seoul using AWS minutely Rainfall Data (AWS 분(分) 단위 강우자료를 이용한 서울지역 특성에 따른 행정자치 구(區)별 목표강우량 산정에 관한 연구)

  • Kim, Min-seoka;Son, Hong-mina;Moon, Young-il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • It is very important to decide probability precipitation that is used as hydraulic structure design and target rainfall for urban disaster prevention. Especially, National Emergency Management Agency (NAMA) announced target rainfall from probability precipitation in korea on city and district level. It make use to performance evaluation of disaster prevention and planning of development for disasters prevention capacity target. In this study was calculated target rainfall that is duration 1~3 hour based unit of gu (borough) by point and regional frequency analysis using rainfall data of Surface Synoptic Stations (SSS) and Automatic Weather Stations (AWS). The result of this study can utilized as a reference to related business such as disaster capability assessment and achievement of prevention capacity target against disasters. And it also will be contribute to establishment of prevention capacity target against disasters.

Derivation of Frequency Relationship Curve in Urban Watershed (도시유역의 빈도 관계곡선 유도)

  • Seo, ju-seok;Park, man-kyo;Woo, seung-sik;Lee, tae-woo;Jeong, chan-wook;Lee, jong-seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.285-288
    • /
    • 2008
  • This study aims to rout optimized design flood discharge through prediction of the frequency-based precipitation from the frequency analysis with density of rainfall gage networks in urban watershed. Frequency analysis was examined for the measured rainfall depth with low density of a point and high density of the sub-basin divided into 13 points in watershed. The used rainfall data in order to analyze consists of two groups based on measured rainfall depth for a day duration with 39years of a point and 6years of 13 points by an extending as annual exceedance series, respectively. Selected rainfall data in this analysis show that low-network has maximum rainfall depth with duration 1hr-79.1mm and 24hrs-329.1mm, and high-networks have ones with duration of 1hr-93.0 mm and 24 hrs-245.0 mm, respectively. As the result, probability of the best in this study determined the Gumbel method from the goodness of fit test and the method of prime 6 probability distributions.

  • PDF

Estimation Model for Optimum Probabilistic Rainfall Intensity on Hydrological Area - With Special Reference to Chonnam, Buk and Kyoungnam, Buk Area - (수문지역별 최적확률강우강도추정모형의 재정립 -영.호남 지역을 중심으로 -)

  • 엄병헌;박종화;한국헌
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.2
    • /
    • pp.108-122
    • /
    • 1996
  • This study was to introduced estimation model for optimum probabilistic rainfall intensity on hydrological area. Originally, probabilistic rainfall intensity formula have been characterized different coefficient of formula and model following watersheds. But recently in korea rainfall intensity formula does not use unionize applyment standard between administration and district. And mingle use planning formula with not assumption model. Following the number of year hydrological duration adjust areal index. But, with adjusting formula applyment was without systematic conduct. This study perceive the point as following : 1) Use method of excess probability of Iwai to calculate survey rainfall intensity value. 2) And, use method of least squares to calculate areal coefficient for a unit of 157 rain gauge station. And, use areal coefficient was introduced new probabilistic rainfall intensity formula for each rain gauge station. 3) And, use new probabilistic rainfall intensity formula to adjust a unit of fourteen duration-a unit of fifteen year probabilistic rainfall intensity. 4) The above survey value compared with adjustment value. And use three theory of error(absolute mean error, squares mean error, relative error ratio) to choice optimum probabilistic rainfall intensity formula for a unit of 157 rain gauge station.

  • PDF