• Title/Summary/Keyword: Probability Evaluation

Search Result 1,261, Processing Time 0.029 seconds

An assessment of the effect of hull girder vibration on the statistical characteristics of wave loads

  • Ogawa, Yoshitaka;Takagi, Ken
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • For the assessment of statistical characteristics of wave loads in the real sea state, the probability distribution of wave loads are computed based on the sufficient duration of computations in irregular waves. First of all, the estimation of wave impact loads is well modified applying the displacement potential formulation, which was proposed by one of authors, for solving Wagner's flow model. Consequently, the present computation method is also modified. Prior to the computation in irregular waves, preliminary computation to determine the adequate number of realization of irregular waves is examined. The effect of hull girder vibration on the statistical characteristics is examined by means of the computation with/without hull girder vibration. It is found that hull girder vibration has a certain effect on the probability of occurrence of wave loads. Furthermore, computations taking account of the effect of operation, that is the effects of ship speed and course change, is conducted for the rational evaluation of the effects of hull girder vibration. It is clarified that the effect of operation on the statistical characteristics of wave loads is significant. It is verified that the evaluation without the effect of operation may overestimate the effect of hull girder vibration.

An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions

  • Azar, Bahman Farahmand;Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.979-999
    • /
    • 2015
  • This paper proposes a novel reliability analysis method which computes reliability index, most probable point and probability of failure of uncertain systems more efficiently and accurately with compared to Monte Carlo, first-order reliability and response surface methods. It consists of Initial and Simulation steps. In Initial step, a number of space-filling designs are selected throughout the variables space, and then in Simulation step, performances of most of samples are estimated via interpolation using the space-filling designs, and only for a small number of the samples actual performance function is used for evaluation. In better words, doing so, we use a simple interpolation function called "reduced" function instead of the actual expensive-to-evaluate performance function of the system to evaluate most of samples. By using such a reduced function, total number of evaluations of actual performance is significantly reduced; hence, the method can be called Reduced Function Evaluations method. Reliabilities of six examples including series and parallel systems with multiple failure modes with truncated and/or non-truncated random variables are analyzed to demonstrate efficiency, accuracy and robustness of proposed method. In addition, a reliability-based design optimization algorithm is proposed and an example is solved to show its good performance.

Simulation Based Investigation of Focusing Phased Array Ultrasound in Dissimilar Metal Welds

  • Kim, Hun-Hee;Kim, Hak-Joon;Song, Sung-Jin;Kim, Kyung-Cho;Kim, Yong-Buem
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.228-235
    • /
    • 2016
  • Flaws at dissimilar metal welds (DMWs), such as reactor coolant systems components, Control Rod Drive Mechanism (CRDM), Bottom Mounted Instrumentation (BMI) etc., in nuclear power plants have been found. Notably, primary water stress corrosion cracking (PWSCC) in the DMWs could cause significant reliability problems at nuclear power plants. Therefore, phased array ultrasound is widely used for inspecting surface break cracks and stress corrosion cracks in DMWs. However, inspection of DMWs using phased array ultrasound has a relatively low probability of detection of cracks, because the crystalline structure of welds causes distortion and splitting of the ultrasonic beams which propagates anisotropic medium. Therefore, advanced evaluation techniques of phased array ultrasound are needed for improvement in the probability of detection of flaws in DMWs. Thus, in this study, an investigation of focusing and steering phased array ultrasound in DMWs was carried out using a time reversal technique, and an adaptive focusing technique based on finite element method (FEM) simulation. Also, evaluation of focusing performance of three different focusing techniques was performed by comparing amplitude of phased array ultrasonic signals scattered from the targeted flaw with three different time delays.

An Evaluation Method of Fatigue Strength and Reliability in a Railway Wheel with an Application of Strength-Stress Interference Model (강도-응력 간섭모델을 적용한 철도차량용 차륜의 피로강도 및 신뢰성 평가법)

  • 박병노;김기환;김호경
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.2
    • /
    • pp.118-124
    • /
    • 2002
  • The failure probability of wheel beyond 10$\^$7/ cycles is achieved by the strengths-stress interference model for the evaluation of fatigue strength and reliability in the wheel, From plane bending fatigue test results, the fatigue life (N$\_$f/) for the smooth and 200㎛ holed specimens can be represented as $\sigma$$\_$a/ = 1326N$\_$f/$\^$-0.10/ and $\sigma$$\_$a/ = 2894N$\_$f/$\^$-0.18/. Respectively, fatigue strength of the wheel at beyond 10$\^$7/cycles was about 332 MPa. And, the fatigue strength for the specimen with a micro hole (d=200㎛) which simulated an inclusion on the wheel surface was about 235 MPa. Thus, a micro hole (d=200㎛) caused about 30% reduction of fatigue strength of the specimen. The failure probabilities for the smooth and micro-holed specimens, derived from the strength-stress interference model, are 0.0148% and 13.05%, respectively. The current finding suggests that at least 200 ㎛ sized inclusion, which might be produced during manufacturing process, will cause a critical effect on integrity of the railway vehicle.

Design and Evaluation of DDoS Attack Detection Algorithm in Voice Network (음성망 환경에서 DDoS 공격 탐지 알고리즘 설계 및 평가)

  • Yun, Sung-Yeol;Kim, Hwan-Kuk;Park, Seok-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2555-2562
    • /
    • 2009
  • The algorithm that is proposed in this paper defined a probability function to count connection process and connection-end process to apply TRW algorithm to voice network. Set threshold to evaluate the algorithm that is proposed, Based on the type of connection attack traffic changing the probability to measure the effectiveness of the algorithm, and Attack packets based on the speed of attack detection time was measured. At the result of evaluation, proposed algorithm shows that DDoS attack starts at 10 packets per a second and it detects the attack after 1.2 seconds from the start. Moreover, it shows that the algorithm detects the attack in 0.5 second if the packets were 20 per a second.

A Study on the Target Search Logic in the ASW Decision Support System (대잠전 의사결정지원 시스템에서 표적 탐색 논리 연구)

  • Cho, Sung-Jin;Choi, Bong-Wan;Jeon, Jae-Hyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.824-830
    • /
    • 2010
  • It is not easy job to find a underwater target using sonar system in the ASW operations. Many researchers have tried to solve anti-submarine search problem aiming to maximize the probability of detection under limited searching conditions. The classical 'Search Theory' deals with search allocation problem and search path problem. In both problems, the main issue is to prioritize the searching cells in a searching area. The number of possible searching path that is combination of the consecutive searching cells increases rapidly by exponential function in the case that the number of searching cells or searchers increases. The more searching path we consider, the longer time we calculate. In this study, an effective algorithm that can maximize the probability of detection in shorter computation time is presented. We show the presented algorithm is quicker method than previous algorithms to solve search problem through the comparison of the CPU computation time.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

Reliability Analysis in Designing of Reinforced Soil Structures using Uni-Modal Bounds (단일모드 구간해법을 이용한 보강토옹벽 설계의 신뢰성해석)

  • Kim, Hyun-Ki;Lee, Sung-Hyouk;Choi, Chan-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.17-25
    • /
    • 2010
  • Evaluation of stability in traditional designing of reinforced soil structures is executed by examination of internal and external stability. Analysis of internal stability is for pull-out and ductile strength. Analysis of external stability is for settlement, overturning and sliding. To minimize inherent uncertainties of soil properties and analytical model, reliability analysis was developed recently. In this study, reliability analysis method considering simultaneous failure probability for various failure mode of internal and external stability is proposed. By applying uni-modal bounds, Stability of system reliability of reinforced soil structures is evaluated by integrating multi failure mode for various analytical model. Because of complex consideration for various failure shapes and modes, it is possible to secure advanced safety by using simultaneous failure probability. And evaluation of reinforced soil structure is executed by representative index, simultaneous failure probability, than previous method.

  • PDF

Evaluation of a Solar Flare Forecast Model with Cost/Loss Ratio

  • Park, Jongyeob;Moon, Yong-Jae;Lee, Kangjin;Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.84.2-84.2
    • /
    • 2015
  • There are probabilistic forecast models for solar flare occurrence, which can be evaluated by various skill scores (e.g. accuracy, critical success index, heidek skill score, true skill score). Since these skill scores assume that two types of forecast errors (i.e. false alarm and miss) are equal or constant, which does not take into account different situations of users, they may be unrealistic. In this study, we make an evaluation of a probabilistic flare forecast model (Lee et al. 2012) which use sunspot groups and its area changes as a proxy of flux emergence. We calculate daily solar flare probabilities from 1996 to 2014 using this model. Overall frequencies are 61.08% (C), 22.83% (M), and 5.44% (X). The maximum probabilities computed by the model are 99.9% (C), 89.39% (M), and 25.45% (X), respectively. The skill scores are computed through contingency tables as a function of forecast probability, which corresponds to the maximum skill score depending on flare class and type of a skill score. For the critical success index widely used, the probability threshold values for contingency tables are 25% (C), 20% (M), and 4% (X). We use a value score with cost/loss ratio, relative importance between the two types of forecast errors. We find that the forecast model has an effective range of cost/loss ratio for each class flare: 0.15-0.83(C), 0.11-0.51(M), and 0.04-0.17(X), also depending on a lifetime of satellite. We expect that this study would provide a guideline to determine the probability threshold for space weather forecast.

  • PDF

Analysis Technique on Time-dependent PDF (Probability of Durability Failure) Considering Equivalent Surface Chloride Content (균등 표면 염화물량을 고려한 시간 의존적 내구적 파괴확률 해석기법)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.46-52
    • /
    • 2017
  • Recently durability design based on deterministic or probabilistic method has been attempted since service life evaluation in RC(Reinforced Concrete) structure exposed to chloride attack is important. The deterministic durability design contains a reasonable method with time effect on surface chloride content and diffusion coefficient, however the probabilistic design procedure has no consideration of time effect on both. In the paper, a technique on PDF(Probability of Durability Failure) evaluation is proposed considering time effect on diffusion and surface chloride content through equivalent surface chloride content which has same induced chloride content within a given period and cover depth. With varying period to built-up from 10 to 30 years and maximum surface chloride content from $5.0kg/m^3$ to $10.0kg/m^3$, the changing PDF and the related service life are derived. The proposed method can be reasonably applied to actual durability design with preventing conservative design parameters and considering the same analysis conditions of the deterministic method.