• 제목/요약/키워드: Probabilistic safety assessment (PSA)

검색결과 131건 처리시간 0.026초

Level 1 probabilistic safety assessment of supercritical-CO2-cooled micro modular reactor in conceptual design phase

  • So, Eunseo;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.498-508
    • /
    • 2021
  • Micro reactors are increasingly being considered for utilization as distributed power sources. Hence, the probabilistic safety assessment (PSA) of a direct supercritical-CO2-cooled fast reactor, called micro modular reactor (MMR), was performed in this study; this reactor was developed using innovative design concepts. It adopted a modular design and passive safety systems to minimize site constraints. As the MMR is in its conceptual design phase, design weaknesses and valuable safety insights could be identified during PSA. Level 1 internal event PSA was carried out involving literature survey, system characterization, identification of initiating events, transient analyses, development of event trees and fault trees, and quantification. The initiating events and scenarios significantly contributing to core damage frequency (CDF) were determined to identify design weaknesses in MMR. The most significant initiating event category contributing to CDF was the transients with the power conversion system initially available category, owing to its relatively high occurrence frequency. Further, an importance analysis revealed that the safety of MMR can be significantly improved by improving the reliability of reactor trip and passive decay heat removal system operation. The findings presented in this paper are expected to contribute toward future applications of PSA for assessing unconventional nuclear reactors in their conceptual design phases.

Holistic Approach to Multi-Unit Site Risk Assessment: Status and Issues

  • Kim, Inn Seock;Jang, Misuk;Kim, Seoung Rae
    • Nuclear Engineering and Technology
    • /
    • 제49권2호
    • /
    • pp.286-294
    • /
    • 2017
  • The events at the Fukushima Daiichi Nuclear Power Station in March 2011 point out, among other matters, that concurrent accidents at multiple units of a site can occur in reality. Although site risk has been deterministically considered to some extent in nuclear power plant siting and design, potential occurrence of multi-unit accident sequences at a site was not investigated in sufficient detail thus far in the nuclear power community. Therefore, there is considerable worldwide interest and research effort directed toward multi-unit site risk assessment, especially in the countries with high-density nuclear-power-plant sites such as Korea. As the technique of probabilistic safety assessment (PSA) has been successfully applied to evaluate the risk associated with operation of nuclear power plants in the past several decades, the PSA having primarily focused on single-unit risks is now being extended to the multi-unit PSA. In this paper we first characterize the site risk with explicit consideration of the risk associated with spent fuel pools as well as the reactor risks. The status of multi-unit risk assessment is discussed next, followed by a description of the emerging issues relevant to the multi-unit risk evaluation from a practical standpoint.

Development of logical structure for multi-unit probabilistic safety assessment

  • Lim, Ho-Gon;Kim, Dong-San;Han, Sang Hoon;Yang, Joon Eon
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1210-1216
    • /
    • 2018
  • Site or multi-unit (MU) risk assessment has been a major issue in the field of nuclear safety study since the Fukushima accident in 2011. There have been few methods or experiences for MU risk assessment because the Fukushima accident was the first real MU accident and before the accident, there was little expectation of the possibility that an MU accident will occur. In addition to the lack of experience of MU risk assessment, since an MU nuclear power plant site is usually very complex to analyze as a whole, it was considered that a systematic method such as probabilistic safety assessment (PSA) is difficult to apply to MU risk assessment. This paper proposes a new MU risk assessment methodology by using the conventional PSA methodology which is widely used in nuclear power plant risk assessment. The logical failure structure of a site with multiple units is suggested from the definition of site risk, and a decomposition method is applied to identify specific MU failure scenarios.

고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가 (Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network)

  • 이세혁;문창욱;박상기;조정래;송준호
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.273-282
    • /
    • 2023
  • 원자력발전소 지진 확률론적 안전성 평가인 PSA(Probabilistic Safety Assessment)는 오랜 기간에 걸쳐 확고히 구축되어 왔다. 반면에 다양한 공정 기반의 산업시설물의 경우 화재, 폭발, 확산(유출) 재난에 대해 주로 연구되어 왔으며, 지진에 대해서는 상대적으로 연구가 미미하였다. 하지만, 플랜트 설계 당시와 달리 해당 부지가 지진 영향권에 들어갈 경우 지진 PSA 수행은 필수적이다. 지진 PSA를 수행하기 위해서는 확률론적 지진 재해도 해석(Probabilistic Seismic Hazard Analysis), 사건수목 해석(Event Tree Analysis), 고장수목 해석(Fault Tree Analysis), 취약도 곡선 등을 필요로 한다. 원자력 발전소의 경우 노심 손상 방지라는 최우선 목표에 따라 많은 사고 시나리오 분석을 통해 사건수목이 구축되었지만, 산업시설물의 경우 공정의 다양성과 최우선 손상 방지 핵심설비의 부재로 인해 일반적인 사건수목 구축이 어렵다. 따라서, 본 연구에서는 산업시설물 지진 PSA를 수행하기 위해 고장수목을 바탕으로 확률론적 시각도구인 베이지안 네트워크(Bayesian Network, BN)로 변환하여 리스크를 평가하는 방법을 제안한다. 제안된 방법을 이용하여 임의로 생성된 가스플랜트 Plot Plan에 대해 최종 BN을 구축하고, 다양한 사건 경우에 대한 효용성있는 의사결정과정을 보임으로써 그 우수성을 확인하였다.

Insights from the KNGR Preliminary Level 1 Probabilistic Safety Assessment

  • Na, Jang-Hwan;Oh, Hae-Cheol;Oh, Seung-Jong
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.862-868
    • /
    • 1998
  • Korean Next Generation Reactor(KNGR) is a standardized evolutionary Advanced Light Water Reactor design under development Korea Power Company(KEPCO). It incorporates design enhncements such as active and passive advanced design features(ADFs) to increase the plant safety. A Preliminary level 1 Probabilistic Safety Assessment(PSA) has been performed for KNGR to examine the effect of these safety features. The preliminary PSA result shows that it meets the KNGR safety goal on core damage frequency(CDF). The result of this safety assessment shows that the four-train safety systems, and the ADFs such as Passive Secondary Cooling System (PSCS) contributes greatly to the reduction the CDF. Furthermore, several design changes are made or proposed for detailed review based on the PSA insights.

  • PDF

리스크정보 최적화를 통한 국내 연구용원자로의 안전성 향상 (Risk-Informed Optimization of Operation and Procedures for Korea Research Reactor)

  • 이윤환;장승철
    • 한국안전학회지
    • /
    • 제37권2호
    • /
    • pp.43-53
    • /
    • 2022
  • This paper describes an attempt to improve and optimize the operational safety level of a domestic research reactor by conducting a probabilistic safety assessment (PSA) under full-power operating conditions. The PSA was undertaken to assess the level of safety at an operating research reactor in Korea, to evaluate whether it is probabilistically safe and reliable to operate, and to obtain insights regarding the requisite procedural and design improvements for achieving safer operation. The technical objectives were to use the PSA to identify the accident sequences leading to core damage, and to conduct sensitivity analyses based thereon to derive insights regarding potential design and procedural improvements. Based on the dominant accident sequences identified by the PSA, eight types of sensitivity analysis were performed, and relevant insights for achieving safer operation were derived. When these insights were applied to the reactor design and operating procedure, the risk was found to be reduced by approximately ten times, and the safety was significantly improved. The results demonstrate that the PSA methodology is very effective for improving reactor safety in the full-power operating phase. In particular, it is a highly suitable approach for identifying the deficiencies of a reactor operating at full power, and for improving the reactor safety by overcoming those deficiencies.

Technical note: Estimation of Korean industry-average initiating event frequencies for use in probabilistic safety assessment

  • Kim, Dong-San;Park, Jin Hee;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.211-221
    • /
    • 2020
  • One fundamental element of probabilistic safety assessment (PSA) is the initiating event (IE) analysis. Since IE frequencies can change over time, time-trend analysis is required to obtain optimized IE frequencies. Accordingly, such time-trend analyses have been employed to estimate industry-average IE frequencies for use in the PSAs of U.S. nuclear power plants (NPPs); existing PSAs of Korean NPPs, however, neglect such analysis in the estimation of IE frequencies. This article therefore provides the method for and results of estimating Korean industry-average IE frequencies using time-trend analysis. It also examines the effects of the IE frequencies obtained from this study on risk insights by applying them to recently updated internal events Level 1 PSA models (at-power and shutdown) for an OPR-1000 plant. As a result, at-power core damage frequency decreased while shutdown core damage frequency increased, with the related contributions from each IE category changing accordingly. These results imply that the incorporation of time-trend analysis leads to different IE frequencies and resulting risk insights. The IE frequency distributions presented in this study can be used in future PSA updates for Korean NPPs, and should be further updated themselves by adding more recent data.

연구용원자로 기본설계에 대한 예비 확률론적 안전성 평가 (Aspects of Preliminary Probabilistic Safety Assessment for a Research Reactor in the Conceptual Design Phase)

  • 이윤환
    • 한국안전학회지
    • /
    • 제34권3호
    • /
    • pp.102-110
    • /
    • 2019
  • This paper describes the work and results of the preliminary Probabilistic Safety Assessment (PSA) for a research reactor in the design phase. This preliminary PSA was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA described here is a Level 1 PSA which addresses the risks associated with core damage. After reviewing the documents and its conceptual design, eight typical initiating events are selected regarding internal events during the normal operation of the reactor. Simple fault tree models for the PSA are developed instead of the detailed model at this conceptual design stage. A total of 32 core damage accident sequences for an internal event analysis were identified and quantified using the AIMS-PSA. LOCA-I has a dominant contribution to the total CDF by a single initiating event. The CDF from the internal events of a research reactor is estimated to be 7.38E-07/year. The CDF for the representative initiating events is less than 1.0E-6/year even though conservative assumptions are used in reliability data. The conceptual design of the research reactor is designed to be sufficiently safe from the viewpoint of safety.

알파모수 공통원인고장 평가 기법을 활용한 원자력발전소 안전성 평가 (Probabilistic Safety Assessment of Nuclear Power Plants Using Alpha Factor Method for Common Cause Failure)

  • 황석원
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.51-55
    • /
    • 2014
  • Based on the results of Probabilistic Safety Assessment(PSA) for a Nuclear Power Plant (NPP), Common Cause Failure(CCF) events have been recognized as one of the main contributors to the risk. Also, the CCF data and estimation method used in domestic PSA models have been pointed out as an issue with respect to the quality. The existing method of MGL and non-staggered testing even widely used were considered conservative in estimating the safety and had a limited capability in uncertainty analyses. Therefore, this paper presents the CCF estimation using a new generic data source and Alpha factor method. The analyses showed that Alpha factor and staggered method are effective in estimating the CCF contribution and risk insights of reference plant. This method will be a common bases for the optimization of new design for the construction plants as well as for the updating of safety assessment on the operating nuclear power plants.

JRTR 연구용원자로에 대한 최종 확률론적 안전성평가 (A Study on the Final Probabilistic Safety Assessment for the Jordan Research and Training Reactor)

  • 이윤환
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.86-95
    • /
    • 2020
  • This paper describes the work and the results of the final Probabilistic Safety Assessment (PSA) for the Jordan Research and Training Reactor (JRTR). This final PSA was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA described here is a Level 1 PSA, which addresses the risks associated with core damage. After reviewing the documents and its conceptual design, nine typical initiating events were selected regarding internal events during the normal operation of the reactor. AIMS-PSA (Version 1.2c) was used for the accident quantification, and FTREX was used as the quantification engine. 1.0E-15/yr of the cutoff value was used to deliminate the non-effective Minimal Cut Sets (MCSs) when quantifying the JRTR PSA model. As a result, the final result indicates a point estimate of 2.02E-07/yr for the overall Core Damage Frequency (CDF) attributable to internal initiating events in the core damage state for the JRTR. A Loss of Primary Cooling System Flow (LOPCS) is the dominant contributor to the total CDF by a single initiating event (9.96E-08/yr), and provides 49.4% of the CDF. General Transients (GTRNs) are the second largest contributor, and provide 32.9% (6.65E-08/yr) of the CDF.