• Title/Summary/Keyword: Probabilistic model

Search Result 1,254, Processing Time 0.028 seconds

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

복합전력계통의 신뢰도와 혼잡비용과의 상관관계성에 관한 기초 연구 (A Basic Study on Relationship between Reliability and Congestion Cost of Composite Power System)

  • 최재석;트란트룽틴;권중지;정상헌;시보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.275-278
    • /
    • 2006
  • This paper describes a probabilistic annual congestion cost assessment of a grid at a composite power system derived from a model. This probabilistic congestion cost assessment simulation model includes capacity limitation and uncertainties of the generators and transmission lines. In this paper, the proposed probabilistic congestion cost assessment model is focused on an annualized simulation methodology for solving long-term grid expansion planning issues. It emphasizes the questions of "how should the uncertainties of system elements (generators, lines and transformers, etc.) be considered for annual congestion cost assessment from the macro economic view point"? This simulation methodology comes essentially from a probabilistic production cost simulation model of composite power systems. This type of model comes from a nodal equivalent load duration curve based on a new effective load model at load points. The characteristics and effectiveness of this new simulation model are illustrated by several case studies of a test system.

  • PDF

산사태 발생예측을 위한 확률모델 (A Probabilistic Model for Landslide Prediction)

  • 채병곤;김원영;조용찬;송영석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.185-190
    • /
    • 2005
  • In this study, a probabilistic prediction model for debris flow occurrence was developed using a logistic regression analysis. The model can be applicable to metamorphic rocks and granite area. In order to develop the prediction model, detailed field survey and laboratory soil tests were conducted both in the northern and the southern Gyeonggi province and in Sangju, Gyeongbuk province, Korea. The six landslide triggering factors were selected by a logistic regression analysis as well as several basic statistical analyses. The six factors consist of two topographic factors and four geological and geotechnical factors. The model assigns a weight value to each selected factor. The verification results reveal that the model has 86.5% of prediction accuracy. Therefore, it is possible to predict landslide occurrence in a probabilistic and quantitative manner.

  • PDF

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation

  • Gardoni, Paolo;Trejo, David
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.527-555
    • /
    • 2013
  • This paper proposes probabilistic models for estimating the seismic demands on reinforced concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the bridge columns and the deformation demand on the isolation devices. An experimental design is used to generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and the Caltrans' Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time history analysis of each bridge to develop probabilistic models that are practical and are able to account for the uncertainties and biases in the current, common deterministic model. As application of the developed probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates the reliability-based design for this type of bridges and contributes to the transition from limit state design to performance-based design.

A Probabilistic Network for Facial Feature Verification

  • Choi, Kyoung-Ho;Yoo, Jae-Joon;Hwang, Tae-Hyun;Park, Jong-Hyun;Lee, Jong-Hoon
    • ETRI Journal
    • /
    • 제25권2호
    • /
    • pp.140-143
    • /
    • 2003
  • In this paper, we present a probabilistic approach to determining whether extracted facial features from a video sequence are appropriate for creating a 3D face model. In our approach, the distance between two feature points selected from the MPEG-4 facial object is defined as a random variable for each node of a probability network. To avoid generating an unnatural or non-realistic 3D face model, automatically extracted 2D facial features from a video sequence are fed into the proposed probabilistic network before a corresponding 3D face model is built. Simulation results show that the proposed probabilistic network can be used as a quality control agent to verify the correctness of extracted facial features.

  • PDF

Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides

  • Ghosh, Pratanu;Konecny, Petr;Lehner, Petr;Tikalsky, Paul J.
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.305-313
    • /
    • 2017
  • A robust finite element based reinforced concrete bridge deck corrosion initiation model is applied for time-dependent probabilistic sensitivity analysis. The model is focused on uncertainties in the governing parameters that include variation of high performance concrete (HPC) diffusion coefficients, concrete cover depth, surface chloride concentration, holidays in reinforcements, coatings and critical chloride threshold level in several steel reinforcements. The corrosion initiation risk is expressed in the form of probability over intended life span of the bridge deck. Conducted study shows the time-dependent sensitivity analysis to evaluate the significance of governing parameters on chloride ingress rate, various steel reinforcement protection and the corrosion initiation likelihood. Results from this probabilistic analysis provide better insight into the effect of input parameters variation on the estimate of the corrosion initiation risk for the design of concrete structures in harsh chloride environments.

A probabilistic micromechanical framework for self-healing polymers containing microcapsules

  • D.W. Jin;Taegeon Kil;H.K. Lee
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.167-177
    • /
    • 2023
  • A probabilistic micromechanical framework is proposed to quantify numerically the self-healing capabilities of polymers containing microcapsules. A two-step self-healing process is designed in this study: A probabilistic micromechanical framework based on the ensemble volume-averaging method is derived for the polymers, and a hitting probability model combined with a crack nucleation model is then utilized for encountering microcapsules and microcracks. Using this framework, a series of parametric investigations are performed to examine the influence of various model parameters (e.g., the volume fraction of microcapsules, microcapsule radius, radius ratio of microcracks to microcapsules, microcrack aspect ratio, and scale parameter) on the self-healing capabilities of the polymers. The proposed framework is also implemented into a finite element code to solve the self-healing behavior of tapered double cantilever beam specimens.

확률적 확산을 이용한 스테레오 정합 알고리듬 (New stereo matching algorithm based on probabilistic diffusion)

  • 이상화;이충웅
    • 전자공학회논문지S
    • /
    • 제35S권4호
    • /
    • pp.105-117
    • /
    • 1998
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The probabilistic models are independence and similarity among the neighboring disparities in the configuration.The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into the some different forms corresponding to the probabilistic models in the disparity neighborhood system or configuration. And, we proposed new probabilistic models in order to simplify the joint probability distribution of disparities in the configuration. According to the experimental results, the proposed algorithm outperformed the other ones, such as sum of swuared difference(SSD) based algorithm and Scharstein's method. We canconclude that the derived formular generalizes the probabilistic diffusion based on Bayesian MAP algorithm for disparity estimation, and the propsoed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to 0.01% of the generalized formula.

  • PDF

각 부하지점별 확률론적 발전비용 산정을 위한 수치해석적 방법 (Numerical Analysis Method for Nodal Probabilistic Production Cost Simulation)

  • 김홍식;문승필;최재석;노대석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.112-115
    • /
    • 2001
  • This paper illustrates a new nodal effective load model for nodal probabilistic production cost simulation of the load point in a composite power system. The new effective load model includes capacities and uncertainties of generators as well as transmission lines. The CMELDC based on the new effective load model at HLII has been developed also. The CMELDC can be obtain from convolution integral processing of the outage capacity probabilistic distribution function of the fictitious generator and the original load duration curve given at the load point. It is expected that the new model for the CMELDC proposed. In this study will provide some solutions to many problems based on nodal and decentralized operation and control of an electric power systems under competition environment in future. The CMELDC based on the new model at HLII will extend the application areas of nodal probabilistic production cost simulation, outage cost assessment and reliability evaluation etc. at load points. The characteristics and effectiveness of this new model are illustrated by a case study of a test system.

  • PDF

Probabilistic bearing capacity assessment for cross-bracings with semi-rigid connections in transmission towers

  • Zhengqi Tang;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • 제89권3호
    • /
    • pp.309-321
    • /
    • 2024
  • In this paper, the effect of semi-rigid connections on the stability bearing capacity of cross-bracings in steel tubular transmission towers is investigated. Herein, a prediction method based on the hybrid model which is a combination of particle swarm optimization (PSO) and backpropagation neural network (BPNN) is proposed to accurately predict the stability bearing capacity of cross-bracings with semi-rigid connections and to efficiently conduct its probabilistic assessment. Firstly, the establishment of the finite element (FE) model of cross-bracings with semi-rigid connections is developed on the basis of the development of the mechanical model. Then, a dataset of 7425 samples generated by the FE model is used to train and test the PSO-BPNN model, and the accuracy of the proposed method is evaluated. Finally, the probabilistic assessment for the stability bearing capacity of cross-bracings with semi-rigid connections is conducted based on the proposed method and the Monte Carlo simulation, in which the geometric and material properties including the outer diameter and thickness of cross-sections and the yield strength of steel are considered as random variables. The results indicate that the proposed method based on the PSO-BPNN model has high accuracy in predicting the stability bearing capacity of cross-bracings with semi-rigid connections. Meanwhile, the semi-rigid connections could enhance the stability bearing capacity of cross-bracings and the reliability of cross-bracings would significantly increase after considering semi-rigid connections.