• Title/Summary/Keyword: Probabilistic model

Search Result 1,254, Processing Time 0.025 seconds

Asymptotic Test for Dimensionality in Probabilistic Principal Component Analysis with Missing Values

  • Park, Chong-sun
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.49-58
    • /
    • 2004
  • In this talk we proposed an asymptotic test for dimensionality in the latent variable model for probabilistic principal component analysis with missing values at random. Proposed algorithm is a sequential likelihood ratio test for an appropriate Normal latent variable model for the principal component analysis. Modified EM-algorithm is used to find MLE for the model parameters. Results from simulations and real data sets give us promising evidences that the proposed method is useful in finding necessary number of components in the principal component analysis with missing values at random.

A Probabilistic Model for the Prediction of Burr Formation in Face Milling

  • Suneung Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.23-36
    • /
    • 2000
  • A probabilistic model of burr formation in face milling of gray cast iron is proposed. During a face milling operation, an irregular pattern of the edge profile consisting of burrs and edge breakouts is observed at the end of cut. Based on the metal cutting theory, we derive a probabilistic model. The operational bayesian modeling approach is adopted to include the relevant theory in the model.

  • PDF

Numerical simulation of 3-D probabilistic trajectory of plate-type wind-borne debris

  • Huang, Peng;Wang, Feng;Fu, Anmin;Gu, Ming
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.17-41
    • /
    • 2016
  • To address the uncertainty of the flight trajectories caused by the turbulence and gustiness of the wind field over the roof and in the wake of a building, a 3-D probabilistic trajectory model of flat-type wind-borne debris is developed in this study. The core of this methodology is a 6 degree-of-freedom deterministic model, derived from the governing equations of motion of the debris, and a Monte Carlo simulation engine used to account for the uncertainty resulting from vertical and lateral gust wind velocity components. The influence of several parameters, including initial wind speed, time step, gust sampling frequency, number of Monte Carlo simulations, and the extreme gust factor, on the accuracy of the proposed model is examined. For the purpose of validation and calibration, the simulated results from the 3-D probabilistic trajectory model are compared against the available wind tunnel test data. Results show that the maximum relative error between the simulated and wind tunnel test results of the average longitudinal position is about 20%, implying that the probabilistic model provides a reliable and effective means to predict the 3-D flight of the plate-type wind-borne debris.

Probabilistic Model for Performance Analysis of a Heuristic with Multi-byte Suffix Matching

  • Choi, Yoon-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.711-725
    • /
    • 2013
  • A heuristic with multi-byte suffix matching plays an important role in real pattern matching algorithms. By skipping many characters at a time in the process of comparing a given pattern with the text, the pattern matching algorithm based on a heuristic with multi-byte suffix matching shows a faster average search time than algorithms based on deterministic finite automata. Based on various experimental results and simulations, the previous works show that the pattern matching algorithms with multi-byte suffix matching performs well. However, there have been limited studies on the mathematical model for analyzing the performance in a standard manner. In this paper, we propose a new probabilistic model, which evaluates the performance of a heuristic with multi-byte suffix matching in an average-case search. When the theoretical analysis results and experimental results were compared, the proposed probabilistic model was found to be sufficient for evaluating the performance of a heuristic with suffix matching in the real pattern matching algorithms.

A probabilistic framework for drought forecasting using hidden Markov models aggregated with the RCP8.5 projection

  • Chen, Si;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.197-197
    • /
    • 2016
  • Forecasting future drought events in a region plays a major role in water management and risk assessment of drought occurrences. The creeping characteristics of drought make it possible to mitigate drought's effects with accurate forecasting models. Drought forecasts are inevitably plagued by uncertainties, making it necessary to derive forecasts in a probabilistic framework. In this study, a new probabilistic scheme is proposed to forecast droughts, in which a discrete-time finite state-space hidden Markov model (HMM) is used aggregated with the Representative Concentration Pathway 8.5 (RCP) precipitation projection (HMM-RCP). The 3-month standardized precipitation index (SPI) is employed to assess the drought severity over the selected five stations in South Kore. A reversible jump Markov chain Monte Carlo algorithm is used for inference on the model parameters which includes several hidden states and the state specific parameters. We perform an RCP precipitation projection transformed SPI (RCP-SPI) weight-corrected post-processing for the HMM-based drought forecasting to derive a probabilistic forecast that considers uncertainties. Results showed that the HMM-RCP forecast mean values, as measured by forecasting skill scores, are much more accurate than those from conventional models and a climatology reference model at various lead times over the study sites. In addition, the probabilistic forecast verification technique, which includes the ranked probability skill score and the relative operating characteristic, is performed on the proposed model to check the performance. It is found that the HMM-RCP provides a probabilistic forecast with satisfactory evaluation for different drought severity categories, even with a long lead time. The overall results indicate that the proposed HMM-RCP shows a powerful skill for probabilistic drought forecasting.

  • PDF

A Robust Bayesian Probabilistic Matrix Factorization Model for Collaborative Filtering Recommender Systems Based on User Anomaly Rating Behavior Detection

  • Yu, Hongtao;Sun, Lijun;Zhang, Fuzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4684-4705
    • /
    • 2019
  • Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.

Probabilistic Distribution and Variability of Geotechnical Properties with Randomness Characteristic (무작위성을 보이는 지반정수의 확률분포 및 변동성)

  • Kim, Dong-Hee;Lee, Ju-Hyoung;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.87-103
    • /
    • 2009
  • To determine the reliable probabilistic distribution model of geotechnical properties, outlier and randomness test for analysis data, parameter estimation of probabilistic distribution model, and goodness-of-fit test for model parameter and probabilistic distribution model have to be performed in sequence. In this paper, the probabilistic distribution model's geotechnical properties of Songdo area in Incheon are estimated by the above proposed procedure. Also, the coefficient of variation (COV) representing the variability of geotechnical properties is determined for several geotechnical properties. Reliable probabilistic distribution model and COV of geotechnical properties can be used for probability-based design procedure and reasonable choice of design value in deterministic design method.

A Model of Probabilistic Parsing Automata (확률파싱오토마타 모델)

  • Lee, Gyung-Ok
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • Probabilistic grammar is used in natural language processing, and the parse result of the grammar has to preserve the probability of the original grammar. As for the representative parsing method, LL parsing and LR parsing, the former preserves the probability information of the original grammar, but the latter does not. A characteristic of a probabilistic parsing automaton has been studied; but, currently, the generating model of probabilistic parsing automata has not been known. The paper provides a model of probabilistic parsing automata based on the single state parsing automata. The generated automaton preserves the probability of the original grammar, so it is not necessary to test whether or not the automaton is probabilistic parsing automaton; defining a probability function for the automaton is not required. Additionally, an efficient automaton can be constructed by choosing an appropriate parameter.

A methodology to evaluate corroded RC structures using a probabilistic damage approach

  • Coelho, Karolinne O.;Leonel, Edson D.;Florez-Lopez, Julio
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Several aspects influence corrosive processes in reinforced concrete (RC) structures such as environmental conditions, structural geometry and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description of the corrosive phenomena. Besides, the definition of limit states in the reliability assessment requires a proper mechanical model. In this context, this study proposes a straightforward methodology for the mechanical-probabilistic modelling of RC structures subjected to reinforcements' corrosion. An improved damage approach is proposed to define the limit states for the probabilistic modelling, considering three main degradation phenomena: concrete cracking, rebar yielding and rebar corrosion caused either by chloride or carbonation mechanisms. The stochastic analysis is evaluated by the Monte Carlo simulation method due to the computational efficiency of the Lumped Damage Model for Corrosion (LDMC). The proposed mechanical-probabilistic methodology is implemented in a computational framework and applied to the analysis of a simply supported RC beam and a 2D RC frame. Curves illustrate the probability of failure evolution over a service life of 50 years. Moreover, the proposed model allows drawing the probability of failure map and then identifying the critical failure path for progressive collapse analysis. Collapse path changes caused by the corrosion phenomena are observed.

Probabilistic Approach for Predicting Degradation Characteristics of Corrosion Fatigue Crack (환경피로균열 열화특성 예측을 위한 확률론적 접근)

  • Lee, Taehyun;Yoon, Jae Young;Ryu, KyungHa;Park, Jong Won
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.271-279
    • /
    • 2018
  • Purpose: Probabilistic safety analysis was performed to enhance the safety and reliability of nuclear power plants because traditional deterministic approach has limitations in predicting the risk of failure by crack growth. The study introduces a probabilistic approach to establish a basis for probabilistic safety assessment of passive components. Methods: For probabilistic modeling of fatigue crack growth rate (FCGR), various FCGR tests were performed either under constant load amplitude or constant ${\Delta}K$ conditions by using heat treated X-750 at low temperature with adequate cathodic polarization. Bayesian inference was employed to update uncertainties of the FCGR model using additional information obtained from constant ${\Delta}K$ tests. Results: Four steps of Bayesian parameter updating were performed using constant ${\Delta}K$ test results. The standard deviation of the final posterior distribution was decreased by a factor of 10 comparing with that of the prior distribution. Conclusion: The method for developing a probabilistic crack growth model has been designed and demonstrated, in the paper. Alloy X-750 has been used for corrosion fatigue crack growth experiments and modeling. The uncertainties of parameters in the FCGR model were successfully reduced using the Bayesian inference whenever the updating was performed.