
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 711

Copyright ⓒ 2013 KSII

http://dx.doi.org/10.3837/tiis.2013.04.006

Probabilistic Model for Performance
Analysis of a Heuristic with Multi-byte

Suffix Matching

Yoon-Ho Choi
1

1 Kyonggi University,

Suwon, 443-760, Korea

[e-mail: ychoi@kyonggi.ac.kr]

*Corresponding author: Yoon-Ho Choi

Received December 13, 2012; revised March 15, 2013; accepted April 5, 2013; published April 30, 2013

Abstract

A heuristic with multi-byte suffix matching plays an important role in real pattern matching

algorithms. By skipping many characters at a time in the process of comparing a given pattern

with the text, the pattern matching algorithm based on a heuristic with multi-byte suffix

matching shows a faster average search time than algorithms based on deterministic finite

automata. Based on various experimental results and simulations, the previous works show

that the pattern matching algorithms with multi-byte suffix matching performs well. However,

there have been limited studies on the mathematical model for analyzing the performance in a

standard manner. In this paper, we propose a new probabilistic model, which evaluates the

performance of a heuristic with multi-byte suffix matching in an average-case search. When

the theoretical analysis results and experimental results were compared, the proposed

probabilistic model was found to be sufficient for evaluating the performance of a heuristic

with suffix matching in the real pattern matching algorithms.

Keywords: Heuristic matching, suffix matching, probabilistic model, average-case search,

pattern matching

712 Y.-H. Choi: Probabilistic Model for Performance Analysis of a Heuristic with Multi -byte Suffix Matching

1. Introduction

Pattern Matching
Protocol

Analysis
Packet

Response

StorageSignature DB

Comparison

Filtered

Packet

Signature Analysis

Log

Pattern

Normalization

Pattern Analysis

Fig. 1. Signature Analysis for Deep Packet Inspection

Many computer systems for deep packet inspection, especially intrusion detection systems,

employ one or multiple pattern matching algorithms to search for signatures within the packet

payload, which will be refered to as a text in this paper. As shown in Fig. 1, by comparing the

contents in the text with the set of signatures using protocol analysis, pattern normalization

and pattern matching algorithms, the signature analysis can interpret a certain series of packets,

where the 'pattern' means a specific content in a signature. Given a packet, the protocol

analysis module identifies and classifies the packet based on the protocol information and then,

the normalization module decodes encoded payloads. After classifying packets that constitute

an event, e.g., as normal or abnormal in an intrusion detection system, by using pattern

matching algorithms, the signature analysis triggers a response to any abnormal packets and

saves the corresponding event logs.

Given a pattern, a pattern matching algorithm finds all occurrences of the set of patterns

within a text. Pattern matching algorithms can be classified into two types based on the

number of matched patterns: single pattern matching algorithms and multi-pattern matching

algorithms [1]-[16]. As an extension of the single pattrn matching algorithm, multi-pattern

matching algorithms find all occurrences of the set of patterns within a text at a time. On the

other hand, based on the data structure used for matching, signature matching algorithms can

also be classified into four categories [17]: automaton-based, heuristics-based, hashing-based,

and bit-parallelism-based.

Among the pattern matching algorithms, the pattern matching algorithm based on a

heuristic with suffix matching, also called the shift-based algorithm, shows a faster average

search time than the other algorithms [1]-[4]. This is because the shift-based algorithms can

skip (shift) many characters at a time when comparing a given pattern with the text [5]-[14].

To realize such a heuristic with suffix matching, the skip-based algorithms use a bad-character

shift table, each index of which consists of either a single-byte search unit or multi-byte search

unit and determines how many characters in the text can be skipped when mismatching

characters (called 'bad characters') are found in the text. Due to this heuristic, while scanning

the text, the text is shifted and then, the bad characters are aligned in the rightmost position,

where the bad characters appear in the text.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 713

Copyright ⓒ 2013 KSII

Compared to the skip-based algorithms with a single-byte search unit, the algorithms that

use a multi-byte search unit can perform well even when thousands of the patterns are given.

This is because the multi-byte search unit can limit the decrease in performance due to the

large frequency of the last character in the thousands of patterns [14]. The skip-based

algorithms with a multi-byte search unit can be further classified into those with a heuristic

with multi-byte prefix matching and those with a heuristic with multi-byte suffix matching.

While the FNP algorithm uses the so called shift distance table (SDT), which uses prefix

sliding window (PSW) of window size w (2w), the Modified Wu-Manber (MWM)

algorithm [13] uses a bad-character shift table, which uses suffix sliding window of window

size B (2B ). To provide the best average-case performance of the naive skip-based

algorithm in deep packet inspection, the algorithm with a heuristic of multi-byte suffix

matching has been widely used [16].

Previous studies that compared various experimental results and simulation results

[11]-[16], have demonstrated that the skip-based algorithms with multi-byte suffix matching

performas well. However, the performance of the algorithms can vary in the presence of

different factors such as traffic characteristics, pattern characteristics, the length of the shortest

pattern and so on. Also, it is difficult to collect and analyze full packet traces in depth because

of privacy issues. Thus, a mathematical model is needed to examine the performance of

various skip-based algorithms in a standard manner.

The main goals of this paper can be summarized as follows: (1) We propose a new

mathematical model for evaluating the performance of a heuristic with multi-byte suffix

matching. Since the performance of the skip-based pattern matching algorithms varies

depending on the characteristics of a heuristic, the proposed model estimates the probabilistic

performance of the skip-based pattern matching algorithms in an average-case search; (2) To

the best of our knowledge, the proposed model is the first mathematical model that analyzes

the performance of a heuristic with multi-byte suffix matching; (3) Based on a comparison

between theoretical analysis results and experimental results under different lengths of the

shortest pattern, the different numbers of signatures and the length of the text, we show that the

proposed probabilistic model can be useful for estimating the performance of the real pattern

matching algorithm based on a heuristic with multi-byte suffix matching.

The rest of the paper is organized as follows. In section 2, we provide an overview on

related studies. In section 3, we describe the overall procedure of a heuristic with multi-byte

suffix matching, and then describe the proposed probabilistic model for measuring the

performance of the heuristic in section 4. After evaluating the proposed model in section 5,

conclusions are provied in section 6.

2. Related Work

Research on performance measurements of the pattern matching algorithms can be classified

into two types: one is based on experimental analysis and the other is based on theoretical

analysis.

In experiments on different settings such as traffic characteristics, packet payloads, rulesets

and processor architecture, S. Antonatos et. al. [16] measured the performance of a network

intrusion detection system and found that the performance of the pattern matching algorithms

were sensitive to traffic characteristics, processor architecture, packet content and ruleset

content, and varies according to ruleset and packet size. The performance of many other

pattern algorithms [1]-[16] has also been evaluated using experiments and simulations under

various conditions. However, the algorithms were designed specifically for the particular text

714 Y.-H. Choi: Probabilistic Model for Performance Analysis of a Heuristic with Multi -byte Suffix Matching

processing domain, such as an intrusion detection system and word processor and thus,

evaluation of the algorithms has usually been constrained to the specific application domain.

In a study on the performance measurement based on theoretical analysis, M.Fish et.al. in [11]

proposed a probabilistic model that examined the average performance of a pattern matching

algorithm, called the Set-wise Boyer-Moore-Horspool(SBMH) algorithm. The SBMH

algorithm scans the text using a heuristic with single-byte suffix matching. The performance

of the SBMH algorithm was measured in terms of the number of characters that must be

examined per character of shift. It is worth noting that the number of characters that must be

examined per character of shift can vary according to the size of search unit [5]. Thus, the

model for a heuristic with single-byte suffix matching is not adequate to analyze the

performance of the pattern matching algorithms based on a heuristic with multi-byte suffix

matching. Since most pattern matching algorithms have been designed with multi-byte search

unit to improve the search performance, it is essential to exactly estimate the performance of a

heuristic with multi-byte suffix matching.

In a rough analysis for evaluating the performance of such pattern matching algorithms,

Wu and Manber [15] showed that by assuming that both the text and the patterns were random

strings with uniform distribution, the expected running time was less than linear in the size of

the text. In this paper, we utilized the same assumptions as those of [15] and, proposed a

good-enough probabilistic model that estimates the average performance of a heuristic with

multi-byte suffix matching. Since it has been shown that when the size of search unit is two,

the average performance is maximized from experiments, we developed a mathematical

analysis model by focusing on two-byte search unit and demonstrated that we can model the

general performance of a heuristic with multi-byte suffix matching.

3. Heuristic with Multi-byte Suffix Matching

The overall procedure for a heuristic with multi-byte suffix matching consists of two stages:

(1) the preprocessing stage; (2) the scanning stage. In the preprocessing stage, the heuristic

constructs the bad-character shift table by using the patterns in the rule sets. By using the given

shift table, the heuristic scans the text to find the matching suffix in the scanning stage.

(1) Preprocessing procedure for constructing the bad-character shift table

A. From the set of patterns, save the length of the shortest pattern(m).

B. Find m characters starting from position 0.

C. Construct the bad-character shift table, each of whose indexes has the

multi-byte search unit.

(2) Scanning procedure for finding patterns in the text by using the

bad-character shift table

A. If the shift value of a multi-byte block in the text is zero in the bad-character

shift table, find the pattern candidates which need exact matching.

i. Check the actual pattern candidates against the text directly.

ii. Move the current pivot by as much as one byte to the right direction

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 715

Copyright ⓒ 2013 KSII

in the text

B. Otherwise, move the current pivot by as much as the shift value in the

bad-character shift table to the right direction in the text

Read N numbers of patterns

from ruleset files.

For N numbers of patterns, find m.

Initialize the bad-character shift table

into m-B+1

START

END

i ≤ N

Yes

No

Choose Si in Pi

j ≤ m

Yes

i=1

j=1

(Shift value of the jth B

Characters in Si) > m-B+1-j

Yes

(Shift value of the jth B

Characters in Si)= m-B+1-j

j=j+1

i=i+1

No

No

Fig. 2. Flowchart Used for Constructing the Bad-Character Shift Table

716 Y.-H. Choi: Probabilistic Model for Performance Analysis of a Heuristic with Multi -byte Suffix Matching

B C F

A C D

C D E

C F F

B C F

A C D

C D E

C F F

“AC”: min(2,1)=1

“BC”: min(2,1)=1

“CD”: min(2,1)=1

“CF”: min(2,1)=1

“CD”: min(1,0)=0

“CF”: min(1,0)=0

“DE”: min(2,0)=0

“FF”: min(2,0)=0

(a) step 1 (b) step 2

window(j=1) window(j=2)

Fig. 3. Computation of Bad-Character Shift Values(m=3, B=2), where the 'dotted box' indicates a

window of size B

Table 1. Bad-Character Shift Table(B=2, P={P1, P2, P3, P4})

Index AA ... AC ... BC ... CD ...

Value 2 2 1 2 1 2 0 2

Index ... CF ... DE ... FF ... ZZ

Value 2 0 2 0 2 0 2 2

To describe each stage in details, we defined the following parameters:

 N: Number of patterns

 P: Finite set of patterns Pi, where P={P1, P2, ..., PN} and i∈{1, 2, ..., N}

 m: Length of the shortest pattern

 S: Finite set of the leftmost strings Si of the length m in patterns Pi, where S={S1,

S2, ..., SN}

 ∑: Finite set of alphabets, |∑ |=a(0a )

 B: Size of a search unit(2B )

 t: Length of matching suffix

 T: Number of consecutive B-byte blocks generated from N patterns

 n: Length of the text

3.1 Preprocessing Procedure

By using the leftmost string of length m in each pattern, we construct the bad-character shift

table. To skip mismatching characters of length m in the text, the initial value of the

bad-character shift table is set into m-B+1. From the analysis of the given set of patterns P, the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 717

Copyright ⓒ 2013 KSII

START

END

Consider a string of size m
from the current pivot in the

text

bad-character shift table

Shift value of the last
substring of size B in the text

== 0

Move the current pivot to the
right in the text by as much as

the shift value

Check the actual pattern candidates
against the text directly

No

Yes

Move the current pivot by as much as
one byte to the right in the text

Current pivot>n
Yes

No

: Preprocessing result

Set the current pivot to m-B+1

Fig. 4. Flowchart Used for Scanning the text by Using the Bad-Character Shift Table

value of each index in the shift table is renewed by setting its value to the minimum value by

comparing to its current value. The details of the preprocessing operation for constructing the

bad-character shift table are shown in Fig. 2.

For example, let us assume B=2, N=4 and P={P1, P2, P3, P4}, where P1="ACDEH",

P2="CDE", P3="BCFGBC" and P4="CFFGB". For the given m=3, we find the leftmost strings

of length three from every pattern: "ACD" from P1, "CDE" from P2, "BCF" from P3, and

"CFF" from P4. First, if the string of B characters in the text does not exist in any of the patterns,

we can shift by m-B+1 [13]. Thus, we set the initial value of the bad-character shift table.

Second, from B characters in the leftmost string, as shown in Fig. 3(a), we can update shift

values for "AC", "CD", "BC", and "CF" into two to one. Also, as shown in Fig. 3(b), by

moving the window of size B to the right by as much as one byte, we can renew the shift values

for "CD" and "CF" into one to zero, and for "DE" and "FF" into two to zero. Finally, we are

able to generate the bad-character shift table that is shown in Table. 1.

718 Y.-H. Choi: Probabilistic Model for Performance Analysis of a Heuristic with Multi -byte Suffix Matching

G A A C D E H J... ...

A C D E H

Current pivot Next pivot

text

Scanning

Direction

m

1 byte shift

P1

Fig. 5. Heuristic Matching with Two-byte Suffix Matching

3.2 Scanning Procedure

Using the given shift table, we scan the text while skipping the mismatching suffix. Also, if the

matching suffix is found in the text, we examine the other characters in the pattern candidates.

The details of the scanning operation for scanning the text by using the bad-character shift

table are shown in Fig. 4.

For example, as shown in Fig. 5, "AC" in the text is found at P1 and then, has the shift value

one in the bad-character shift table. Thus, by skipping one-bad character, the current pivot

located at 'C' in the text moves by as much as one byte to the next pivot position located at 'D'

in the text. At the next pivot position, "CD" with the shift value zero is found from P1, whose

prefix('A') and the remaining characters("EH") also exist in the text. Thus, the algorithms can

find the matched pattern P1 in the text.

3.4 Complexity Analysis

The results of the complexity analysis of each procedure can be derived from [13, 14].

Given the text of length n and N numbers of patterns, the bad-character shift table is

constructed in time O(mN), because any substrings of length B are only considered once and

this process requires a constant time on average to consider them. When scanning the text by

using the bad-character shift table, the shift value of the B-byte substring at the current pivot

can be non-zero or zero. If the shift value at the current pivot is non-zero, the heuristic clearly

moves the current pivot to the right in the text by as much as the shift value. Since the

maximum shift value of a heuristic of multi-byte suffix matching is m-1 for B=2, the total

amount of time in the case of non-zero shifts by a heuristic with multi-byte suffix matching is

O(n/(m-1)). On the other hand, when the shift value is zero, more characters to the left in the

text need to be tested. That is, when we need to check the whole string of length m, it require

time O(m). It is worth noting that at most N strings lead to a shift value of i for 0≤i≤m-B-1 and

the number of all possible strings of length B is at least 2mN. Thus, the probability of one

random string that leads to a shift value of i is ≤1/(2m). Since the probability of a shift value of

zero is also ≤1/(2m), the expected total amount of time required for the case of zero shifts by a

heuristic with multi-byte suffix matching is O(n/m) without the help of any other heuristics

such as the hash table [14] for filtering further bad-characters.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 719

Copyright ⓒ 2013 KSII

4. Probabilistic Model for A Heuristic With Multi-Byte Suffix Matching

In this section, we will describe the proposed mathematical model of a heuristic with

multi-byte suffix matching. As the performance of the heuristic varies depending on the nature

of the input texts and patterns, we examined the probabilistic performance in an average-case

search. For this analysis, we assumed uniform distributions of characters in both the text and

all the patterns, i.e., Pr[Any given character]=1/a. Following the common practice of the

previous work [11], given the length of the text n, the performance can be measured in terms of

the number of comparison that needs to be examined per character in the text:

[]PM nE t . (1)

Thus, we can measure the performance of a heuristic with multi-byte suffix matching into the

number of comparison that needs to be examined per character of shift in the text:

 [] / []PM nE t E s . (2)

Since it is known that for B=2, the heuristic shows the best performance in the aspects of

memory lookups [13], the analysis model for B=2 will be described in the following

subsections.

4.1 Expected Number of Comparisons: E(t)

To find the matching suffix length t, the algorithm needs to examine 2t characters, since every

character except for the first character and the (t+1)th character was examined twice. Given a

string of length m, to compute the matching suffix length t, we considered the probability that

t equals x, where 0≤x≤m. The probability that t equals zero was 1-T/a
2
 since the probability of

at least consecutive two characters in the text matching a string of length m was T/a
2
. Thus, the

probability that t equals zero can be described as follows:
2Pr[0] 1 /t T a   .

(3)

Also, since the probability that t was less than 2 is zero since consecutive two characters were

used for comparison, the probability can be given as follows:

Pr[0 1] 0t   . (4)

In general, the probability was given into Pr[0 1] 0t B    .

The probability that t equals one was zero since consecutive two characters were used for

comparison. That is, Pr[1] 0t   .

To compute the probability that t equals x(2≤x≤m), we considered the number of

consecutive x-byte blocks generated from N patterns. Given a string of length m, 's1, s2,... ,sm-1,

sm', m-x+1 consecutive x-byte blocks were generated: 's1, s2,... ,sx-1, sx' to 'sm-x+1, sm-x+2,... ,sm-1,

sm'. Given N patterns, if x increases by as much as one, the number of consecutive x-byte

blocks decreased by as much as N. Thus, the number of consecutive x-byte blocks equals

T-N(x-2). Based on the fact that Pr[t≥x] was the probability of at least consecutive x characters

in the text matching a string of length m, the following relationship can be derived:

(2)
Pr[] ,

x

T N x
t x

a

 
 

(5)

and the probability that matching suffix length t equals x(2≤x≤m-1) was as follows:

Pr[] Pr[] Pr[1]t x t x t x      . That is,

1

(1)() (2 1)
Pr[] .

x

a T Nx N a
t x

a 

   
  (6)

Also, since the probability that matching suffix length t equals m is, the following relationship

720 Y.-H. Choi: Probabilistic Model for Performance Analysis of a Heuristic with Multi -byte Suffix Matching

can be derived:

(2)
Pr[] ,

m

T N m
t m

a

 
 

(7)

the probability of matching suffix length t equals x (0≤x≤m) was as follows:
2

1

1 / ,x=0;

0 ,x=1;

(1)() (2 1)Pr[] ,2 x m-1;

(2)
 ,x=m.

x

x

T a

a T Nx n at x
a

T N x

a



 


        

  



 (8)

Thus, the expected value of t was computed from probabilities of each value of t from 0 to

m:

0

1

1
2

[] Pr[]

(1)() (2 1) (2)
 .

m

x

m

x m
x

E t x t x

a T Nx N a T N m
x m

a a








  

     
 





 (9)

4.2 Expected Shift Value: E(s)

The probability that each of the last s two-byte blocks in the text mismatching a pattern was
2(1 /)sT a and the probability of each two-byte block in the text matching a pattern was

2/T a . Thus, the probability of the shift value s(2≤s≤ m-2) can be explained as follows:

 2 2(/) 1 /
s

T a T a . (10)

In general, for the probability of the shift value s(B≤s≤ m-B), Eq.(10) can be written

into  (/) 1 /
s

B BT a T a .

Also, since the probability that the shift value s equals to m-1 was the only remaining case

and occurs when all (m-1) two-byte blocks mismatch (:  
1

21 /
m

T a


), the probability of the

shift value s was determined to be:

 

 

2 2

2

0 , 1;

Pr[] (/) 1 / , 2 2;

1 / , 1.

l

l

l

s l T a T a l m

T a l m

 



     

   


 (11)

The expected shift value was computed from probabilities of each shift value from 0 to

m-1:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 721

Copyright ⓒ 2013 KSII

1

0

22
(1)

2(1) 2
1

[] Pr[]

()
 (1)(1) .

m

l

lm
m

l
l

E s l s l

T a T T
l m

a a











  


   





 (12)

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

14

16

P
M

Length of the Shortest Pattern (m)

 B=2, a=256, T=500, N=2000, n=1000

Fig. 6. Theoretical Analysis Results: Average Number of Comparison per Character of Shift in the text

for various m

1 2 3 4 5 6 7 8 9

0

50

100

150

200

250

300

350

400

A
v
g
er

ag
e

P
at

te
rn

 S
ea

rc
h
 T

im
e(

m
s)

m: Length of the Shortest Patterns

 MWM (Normal)

Fig. 7. Experimental Analysis Results: Average Pattern Search Time for various m

722 Y.-H. Choi: Probabilistic Model for Performance Analysis of a Heuristic with Multi -byte Suffix Matching

5. Evaluation

Based on the comparison between the theoretical and experimental analysis results, we show

that the proposed model was sufficient to evaluate the performance characteristics of a

heuristic with suffix matching in the skip-based pattern matching algorithms.

5.1 Experimental Environments

We conducted off-line experiments to compare the performance of the proposed

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

1

2

3

4

5

6

7

8

9

10

11

P
M

Number of N patterns

 B=2, a=256, m=2, n=1000

Fig. 8. Theoretical Analysis Results: Average Number of Comparison per Character of Shift in the text

for various N

0 500 1000 1500 2000 2500 3000 3500 4000

0

100

200

300

400

500

600

700

 MWM

A
v
g
.
p
at

te
rn

 s
ea

rc
h
 t

im
e(

m
s)

Number of signatures(N)

Fig. 9. Experimental Analysis Results: Average Pattern Search Time for various N

probabilistic model with that of a heuristic with multi-byte suffix matching on the real system,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 723

Copyright ⓒ 2013 KSII

called the snort [18]. By using 100 synthetic patterns, we measured the search time of the

MWM algorithm [13] for different values of m and a normal data set. Also, we measured the

search time at the different values of N for a normal data set. It is worth noting that the

performance of the skip-based pattern matching algorithms depended on many conditions

such as the characteristics of traffic, patterns, system performance and so on. Since the

proposed model does not measure the performance of the pattern search time of the skip-based

pattern matching algorithms, but rather the effect of a heuristic with multi-byte suffix

matching on the performance of the skip-based pattern matching algorithms, we measured

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

20

40

60

80

100

120

140

P
M

Length of the text(n)

 B=2, a=256, T=500, N=2000, m=2

Fig. 10. Theoretical Analysis Results: Average Number of Comparison per Character of Shift in the text

for various n

only the search time of the MWM algorithm that is a representative algorithm using a heuristic

with multi-byte suffix matching. For the default ruleset of the snort, the normal data set

generated 259 alerts out of 118,450 (TCP: 115,418, UDP: 2,389, ICMP: 84, OTHER: 559)

packets (103,937KB). The search time was measured using a Linux machine whose CPU

clock was 2.4GHz(L2 cache of 512KBytes), size of main memory is 512MBytes and kernel

version was 2.6.6-8hl.

5.2 Effect of the Length of the Shortest Pattern

Since the performance of a heuristic with suffix matching mainly depends on m [13], we

examined the proposed mathematical model by varying the values of m.

As shown in theoretical analysis results in Fig. 6, the performance of a heuristic with suffix

matching exponentially decreased as the length of the shortest pattern increased. Specifically,

for m less than five, the average number of comparison per character of shift in the text was

relatively large compared to that for more than five. This indicates that the proposed model can

correctly examine the performance, which mainly depended on the patterns in a rule set whose

lengths were less than five [13,14].

In the experimental analysis, shown in Fig. 7, the average pattern search time exponentially

decreased as the length of the shortest pattern increases. From a comparison between Figs. 6

and 7, we observe that the proposed mathematical model is sufficient to show the performance

724 Y.-H. Choi: Probabilistic Model for Performance Analysis of a Heuristic with Multi -byte Suffix Matching

characteristics of a heuristic with multi-byte suffix matching in an average-case search. That is,

from the theoretical and experimental analysis results, it was clearly demonstrated that when

the length of the shortest patterns was less than five, the performance of the heuristic rapidly

decreased. It was also found that when the length of the shortest patterns was larger than four,

the performance slowly decreased.

5.3 Influence of the Number of Signatures

Since the performance of a heuristic with multi-byte suffix matching mainly depended on N,

we examined the proposed mathematical model by varying the values of m. Specifically, since

the value of T depends on N, we assumed that as N was increased from 1000 to 4500 at the

increments of 500, T had the values of 100, 150, 170, 250, 270, 280, 300, 350, respectively.

Based on the theoretical analysis results shown in Fig. 8 and experimental analysis results

shown in Fig. 9, we found that the performance of a heuristic with suffix matching almost

linearly increased as the number of patterns increased. In addition, the the performance largely

increased between N=2000 and N=2500 when compared to the other intervals. This occured

because T largely increased in the interval between N=2000 and N=2500. The difference

between Figs. 8 and 9 comes from the fact that the distribution of characters in the real

patterns was not perfectly uniform. These results indicate that the proposed model can

accurately estimate the performance characteristics of a heuristic with suffix matching in the

skip-based pattern matching algorithms.

5.4 Influence of the Length of the Text

The effect of the length of the text(n) on the performance of a heuristic with suffix matching by

the influence is shown in Fig.10. The number of comparison per character of shift was shown

to linearly increase in proportional to n, which has been demonstrated previously.

6. Conclusions

In this paper, we propose a new probabilistic model for evaluating the performance of a

heuristic with multi-byte suffix matching in an average-case search. Based on a comparison

between the theoretical analysis results and experimental results, the proposed probabilistic

model was shown to be useful for estimating the performance of the real pattern matching

algorithm based on a heuristic with multi-byte suffix matching.

Acknowledgement

This work was supported by Kyonggi University Research Grant 2012-005.

References

[1] A. Aho and M. Corasick, "Efficient string matching: An aid to bibliographic search,"

Communications of the ACM, vol. 18, no. 6, pp. 333-343, 1975. Article (CrossRef Link).

[2] Nathan Tuck, Timothy Sherwood, Brad Calder, and George Varghese, "Deterministic

Memory-Efficient String Matching Algorithms for Intrusion Detection," in Proc. of the 23rd

Conference of the IEEE Communications Society(IEEE INFOCOM 2004), 2004. Article

(CrossRef Link).

http://dx.doi.org/doi:10.1145/360825.360855
http://cseweb.ucsd.edu/~calder/papers/INFOCOM-04-IDS.pdf
http://cseweb.ucsd.edu/~calder/papers/INFOCOM-04-IDS.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 4, Apr. 2013 725

Copyright ⓒ 2013 KSII

[3] R. Smith, C. Estan and S. Jha, "XFA: Faster signature matching with extended automata," IEEE

Symposium on Security and Privacy (Oakland), May 2008. Article (CrossRef Link).

[4] N. Hua, H. Song and T.V. Lakshman, "Variable-Stride Multi-Pattern Matching For Scalable Deep

Packet Inspection," in Proc. of the 28th Conference on Computer Communications(INFOCOM

2009), Apr. 2009. Article (CrossRef Link).

[5] R.S. Boyer and J.S. Moore, "A Fast String Searching Algorithm," Communications of the ACM,

vol. 20(10), pp. 762-772, 1977. Article (CrossRef Link).

[6] A. Apostolico, R. Giancarlo, "The Boyer–Moore–Galil string searching strategies revisited," SIAM

Journal on Computing, vol. 15, no. 1, pp. 98–105, 1986. Article (CrossRef Link).

[7] B. Commentz-Walter, "A string matching algorithm fast on the average," in Proc. of the 6th

International Colloquium on Automata, Languages, and Programming, pp. 118–132, 1979.

Article (CrossRef Link).

[8] B. Xu, X. Zhou, J. Li, "Recursive shift indexing: a fast multi-pattern string matching algorithm," in

Proc. of the 4th International Conference on Applied Cryptography and Network Security (ACNS),

2006. Article (CrossRef Link).

[9] Rong-Tai Liu, Nen-Fu Huang, Chih-Hao Chen, Chia-Nan Kao, "A fast string-matching algorithm

for network processor-based intrusion detection system," ACM Transactions on Embedded

Computing Systems (TECS), vol. 3, no. 3 , pp. 614–633, 2004. Article (CrossRef Link).

[10] R. Horspool, "Practical fast searching in strings. Software Practice and Experience," vol. 10, no. 6,

pp. 501-506, 1980. Article (CrossRef Link).

[11] M. Fish and G. Varghese, "Fast Content-Based Packet Handling for Intrusion Detection," UCSD

TR CS2001-0670, 2001. Article (CrossRef Link).

[12] M.Fish and G.Varghese, "An analysis of fast string matching applied to content-based forwarding

and intrusion detection," UCSD technical report CS2001-0670, 2002. Article (CrossRef Link).

[13] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P. Markatos, Sotiris

Ioannidis, "Regular expression matching on graphics hardware for intrusion detection," in Proc. of

the 12th International Symposium On Recent Advances In Intrusion Detection (RAID), 2009.

Article (CrossRef Link).

[14] Y.-H. Choi, M.-Y. Jung and S.-W. Seo, "A fast pattern matching algorithm with multi-byte search

unit for high-speed network security," Elsevier Computer Communications(ComCom), vol. 34, no.

14, pp. 1750-1763, Sep. 2011. Article (CrossRef Link).

[15] Wu, S. and Manber, U, "A fast algorithm for multi-pattern searching," Department of Computer

Science, University of Arizona. TR94-17, 1994. Article (CrossRef Link).

[16] S. Antonatos, K.G. Anagnostakis, E.P. Markatos, and M. Polychronakis, "Performance Analysis

of Content Matching Intrusion Detection Systems," in Proc. of the IEEE/IPSJ Symposium on

Applications and the Internet(SAINT 2004), pp. 26-30, Jan. 2004. Article (CrossRef Link).

[17] P.-C. Lin, Z.-X. Li, Y.-D. Lin, Y.-C. Lai and F.-C. Lin, "Profiling and accelerating string matching

algorithms in three network content security applications," Communications Surveys & Tutorials

IEEE, Volume: 8, Issue: 2, Page(s): 24–37, Feb., 2007. Article (CrossRef Link).

[18] Sourcefire, Inc., "Snort
TM

 Users Manual 2.8.4," The Snort Project, Apr. 2009. Article (CrossRef

Link).

Yoon-Ho Choi is an assistant professor at department of convergence security in

Kyonggi University, Suwon, Korea. He received the M.S. and Ph.D. degrees from

school of electrical and computer engineering, Seoul National University, S. Korea, in

Aug. 2004 and Aug. 2008, respectively, and the B.S. degree from school of electronics

and electrical engineering, Kyungpook National University, S. Korea, in Aug. 2002.

He was a postdoctoral scholar in Seoul National University from Sep. 2008 to Dec.

2008 and in Pennsylvania State University, University Park, PA, USA, from Jan. 2009

to Dec. 2009. He has served as TPC members in various international conferences and

journals. His research interests include Deep Packet Inspection(DPI) for high-speed

intrusion prevention, mobile computing security, vehicular network security for

realizing secure computer and networks.

http://dl.acm.org/citation.cfm?id=1496277
http://dx.doi.org/doi:10.1109/INFCOM.2009.5061946
http://dx.doi.org/doi:10.1145/359842.359859
http://dx.doi.org/doi:%2010.1137/0215007
http://dx.doi.org/doi:%2010.1007/3-540-09510-1_10
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.6642
http://dx.doi.org/doi:%2010.1145/1015047.1015055
http://dx.doi.org/doi:%2010.1002/spe.4380100608
http://dl.acm.org/citation.cfm?id=902383
http://130.203.133.150/showciting;jsessionid=65289AADEC805325A3726BD525EA4BC0?cid=34176&sort=ascdate
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.6192
http://dx.doi.org/doi:10.1016/j.comcom.2011.03.014
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.2927
http://dx.doi.org/doi:%2010.1109/SAINT.2004.1266118
http://dx.doi.org/doi:%2010.1109/COMST.2006.315851
http://www.snort.org/assets/82/snort_manual.pdf
http://www.snort.org/assets/82/snort_manual.pdf

