하이퍼네트워크는 하이퍼그래프의 일반화된 모델로 학습과정에 있어 진화적 개념을 도입한 확률 그래프 기반의 기계학습 알고리즘으로서 최근 들어 여러 다양한 분야에 응용되고 있다. 그러나 하이퍼네트워크 모델은 데이터와 모델을 구성하는 하이퍼에지 간의 동등비교를 기반으로 하는 학습과정의 특성상 데이터를 구성하는 인자들이 범주형인 경우에만 학습 및 모델링이 가능하고 실수 값으로 표현된 데이터를 학습하기 위해서는 이산화 등의 전처리가 선행되어야 한다는 한계점이 있다. 하지만 데이터 전처리에 있어 이산화 하는 과정은 필연적으로 정보손실이 발생할 수밖에 없기 때문에 이는 분류 예측 모델의 성능 저하를 유발하는 원인이 될 수 있다. 이러한 기존 하이퍼네트워크 모델의 한계점을 극복하기 위해 본 연구에서는 별도의 데이터 전처리 과정을 거치지 않고 실수 인자로 구성된 데이터의 패턴 학습이 가능한 개선된 하이퍼네트워크 모델을 제안한다. 여러 실험 결과를 통해 제안한 하이퍼네트워크 모델은 기존 하이퍼네트워크 모델에 비해 실수형 데이터에 대한 학습 및 분류 결과 성능이 향상되었을 뿐 아니라, 다른 여러기계학습 방법들에 비해서도 경쟁력 있는 성능이 나타남을 확인하였다.
There are a lot of uncertainties in the severe accident phenomena and scenarios in nuclear power plants (NPPs) and one of the major issues for severe accident management is the reduction of these uncertainties. The severe accident management aid system using Probabilistic Safety Assessments (PSA) technology is developed for the management staff in order to reduce the uncertainties. The developed system includes the graphical display for plant and equipment status, previous research results by a knowledge-base technique, and the expected plant behavior using PSA. The plant model used in this paper is oriented to identify plant response and vulnerabilities via analyzing the quantified results, and to set up a framework for an accident management program based on these analysis results. Therefore the developed system may playa central role of information source for decision-making for severe accident management, and will be used as a training tool for severe accident management.
In this paper, we proposed an interactive GUI (Graphical User Interface) system to model buildings with an editable script. Our system also provides probabilistic finite-state machine (PFSM) to define the relationships of sub-models with transformation matrices and transition probabilities for constructing new novel building models automatically. User can not only get various building models by PFSM but also adjust the probabilities of sub-models from PFSM to get desired building models. As shown in the results, the various and vivid building models can be constructed easily and quickly for non-expert users. Besides, user can also edit the script file which is provided by our system to modify the properties directly.
Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.
손 포즈 모델링 및 추적은 컴퓨터 시각 분야에서 어려운 문제로 알려져 있다. 손 포즈 3차원 복원을 위한 방법에는 사용되는 카메라의 수에 따라 다중 카메라 또는 스테레오 카메라 기반 방식과 단일카메라 기반 방식이 있다. 다중 카메라의 경우 여러 대의 카메라를 설치하거나 동기화를 시키는 등에 대한 제약사항이 따른다. 본 논문에서는 확률 그래프 모델에서 신뢰 전파 (Belief Propagation) 알고리즘을 이용하여 단안 카메라에서 획득된 2차원 입력 영상으로부터 3차원 손 포즈를 추정하는 방법을 제안한다. 또한, 은닉 마르코프 모델(Hidden Markov Model)을 인식기로 하여 손가락 클릭 동작을 인식한다. 은닉 노드로 손가락의 관절 정보를 표현하고, 2차원 입력 영상에서 추출된 특징을 관측 노드로 표현한 확률 그래프 모델을 정의한다. 3차원 손 포즈 추적을 위해 그래프 모델에서의 신뢰 전파 알고리즘을 이용한다. 신뢰 전파 알고리즘을 통해 3차원 손 포즈를 추정 및 복원하고, 복원된 포즈로부터 손가락의 움직임에 대한 특징을 추출한다. 추출된 정보는 은닉 마르코프 모델의 입력값이 된다. 손가락의 자연스러운 동작을 위해 본 논문에서는 한 손가락의 클릭 동작 인식에 여러 손가락의 움직임을 함께 고려한다. 제안한 방법을 가상 키패드 시스템에 적응한 결과 300개의 동영상 테스트 데이타에 대해 94.66%의 높은 인식률을 보였다.
본 논문에서는 Kinect와 같은 RGB-D 센서를 이용하여 사람의 3차원 신체 포즈 스트림 데이터를 생성하고, 이로부터 사람의 일상 행위를 효과적으로 인식하는 방법을 제안한다. Kinect SDK나 OpenNI에서 제공하는 실시간 신체 포즈 데이터는 Kinect 중심의 3차원 데카르트 좌표계로 표현되기 때문에, 시점 변화 문제와 크기 변화 문제를 겪을 가능성이 높다. 이러한 문제를 해결하고 시점 및 크기 불변인 특징을 얻기 위해, 본 논문에서는 신체 포즈 데이터를 실험자의 골반을 원점으로 하는 구면 좌표계로 변환하고 실험자의 팔 길이를 이용한 크기 정규화를 수행한다. 또한, 본 논문에서는 확률 그래프 모델 중 하나인 은닉 조건부 랜덤 필드를 이용하여, 고수준의 일상 행위들이 내포하는 다양한 내부 구조를 효과적으로 표현한다. 두 가지 데이터 집합 KAD-70과 CAD-60을 이용한 실험을 통해, 본 논문에서 제안한 행위 인식 방법과 구현 시스템의 높은 인식 성능을 확인하였다.
In this paper, we present an effective system for the 3D scene labeling of objects from RGB-D videos. Our system uses a Markov Random Field (MRF) over a voxel representation of the 3D scene. In order to estimate the correct label of each voxel, the probabilistic graphical model integrates both scores from sliding window-based object detectors and also from object location prior maps. Both the object detectors and the location prior maps are pre-trained from manually labeled RGB-D images. Additionally, the model integrates the scores from considering the geometric constraints between adjacent voxels in the label estimation. We show excellent experimental results for the RGB-D Scenes Dataset built by the University of Washington, in which each indoor scene contains tabletop objects.
한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
/
pp.165-196
/
2001
DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.
DNA칩 기술로 얻어지는 유전자발현데이터(gene expression data)는 생채 조직이나 세포의 수천개에 달하는 유전자의 발현량(expression level)을 측정한 것으로, 유전자발현양상(gene expression pattern)에 기반한 암 종류의 분류 등에 유용하다. 본 논문에서는 확률그래프모델(probabilistic graphical model)의 하나인 베이지안망(Bayesian network)을 발현데이터의 분류에 적응하며, 분류 성능을 높이기 위해 베이지안망의 앙상블(ensemble of Bayesian networks)을 구성한다. 실험은 실제 암 조직에서 추출된 유전자발현데이터에 대해 행해졌다 실험 결과, 앙상블 베이지안망의 분류 정확도는 단일 베이지안망보다 높았으며, naive Bayes 분류기, 신경망, support vector machine(SVM) 등과 대등한 성능을 보였다.
Pharmacogenomics는 개인의 유전적 성향과 약물에 대한 반응간의 관계에 대해 연구하는 학문이다. 이를 위해 DNA microarray 데이터를 비롯한 대량의 생물학 데이터가 구축되고 있으며 이러한 대규모 데이터를 분석하기 위해서 기계학습과 데이터 마이닝의 여러 기법들이 이용되고 있다. 본 논문에서는 pharmacogenomics를 위한 생물학 데이터의 효율적인 분석 수단으로 베이지안망(Bayesian network)을 제시한다. 배이지안망은 다수의 변수들간의 확률적 관계를 표현하는 확률그래프모델(probabilistic graphical model)로 유전자 발현과 약물 반응 사이의 확률적 의존 관계를 분석하는데 적합하다. NC160 cell lines dataset으로부터 학습된 베이지안 유전자망(Bayesian genetic network)이 나타내는 관계는 생물학적 실험을 통해 검증된 실제 관계들을 다수 포함하며, 이는 배이지안 유전자망 분석을 통해 개략적인 유전자-유전자, 약물-약물, 유전자-약물 관계를 효율적으로 파악할 수 있음을 나타낸다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.