• 제목/요약/키워드: Probabilistic Seismic Hazard Evaluation

검색결과 29건 처리시간 0.02초

Seismic probabilistic risk assessment of weir structures considering the earthquake hazard in the Korean Peninsula

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Earthquakes and Structures
    • /
    • 제13권4호
    • /
    • pp.421-427
    • /
    • 2017
  • Seismic safety evaluation of weir structure is significant considering the catastrophic economical consequence of operational disruption. In recent years, the seismic probabilistic risk assessment (SPRA) has been issued as a key area of research for the hydraulic system to mitigate and manage the risk. The aim of this paper is to assess the seismic probabilistic risk of weir structures employing the seismic hazard and the structural fragility in Korea. At the first stage, probabilistic seismic hazard analysis (PSHA) approach is performed to extract the hazard curve at the weir site using the seismic and geological data. Thereafter, the seismic fragility that defines the probability of structural collapse is evaluated by using the incremental dynamic analysis (IDA) method in accordance with the four different design limit states as failure identification criteria. Consequently, by combining the seismic hazard and fragility results, the seismic risk curves are developed that contain helpful information for risk management of hydraulic structures. The tensile stress of the mass concrete is found to be more vulnerable than other design criteria. The hazard deaggregation illustrates that moderate size and far source earthquakes are the most likely scenario for the site. In addition, the annual loss curves for two different hazard source models corresponding to design limit states are extracted.

케이슨 방파제의 확률론적 지진재해도 평가 (Probabilistic Seismic Hazard Analysis of Caisson-Type Breakwaters)

  • 김상훈;김두기
    • 한국해양공학회지
    • /
    • 제19권1호
    • /
    • pp.26-32
    • /
    • 2005
  • Recent earthquakes, measuring over a magnitude of 5.0, on the eastern coast of Korea, have aroused interest in earthquake analyses and the seismic design of caisson-type breakwaters. Most earthquake analysis methods, such as equivalent static analysis, response spectrum analysis, nonlinear analysis, and capacity analysis, are deterministic and have been used for seismic design and performance evaluation of coastal structures. However, deterministic methods are difficult for reflecting on one of the most important characteristics of earthquakes, i.e. the uncertainty of earthquakes. This paper presents results of probabilistic seismic hazard assessment(PSHA) of an actual caisson-type breakwater, considering uncertainties of earthquake occurrences and soil properties. First, the seismic vulnerability of a structure and the seismic hazard of the site are evaluated, using earthquake sets and a seismic hazard map; then, the seismic risk of the structure is assessed.

CURRENT STATUS AND IMPORTANT ISSUES ON SEISMIC HAZARD EVALUATION METHODOLOGY IN JAPAN

  • Ebisawa, Katsumi
    • Nuclear Engineering and Technology
    • /
    • 제41권10호
    • /
    • pp.1223-1234
    • /
    • 2009
  • The outlines of seismic PSA implementation standards and seismic hazard evaluation procedure were shown. An overview of the cause investigation of seismic motion amplification on the Niigata-ken Chuetsu-oki (NCO) earthquake was also shown. Then, the contents for improving the seismic hazard evaluation methodology based on the lessons learned from the NCO earthquake were described. (1) It is very important to recognize the effectiveness of a fault model on the detail seismic hazard evaluation for the near seismic source through the cause investigation of the NCO earthquake. (2) In order to perform and proceed with a seismic hazard evaluation, the Japan Nuclear Energy Safety Organization has proposed the framework of the open deliberation rule regarding the treatment of uncertainty which was made so as to be able to utilize a logic tree. (3) The b-value evaluation on the "Stress concentrating zone," which is a high seismic activity around the NCO hypocenter area, should be modified based on the Gutenberg-Richter equation.

확률론적 지진재해도를 이용한 시나리오 지진의 결정기법에 관한 연구 (Study on the Scenario Earthquake Determining Methods Based on the Probabilistic Seismic Hazard Analysis)

  • 최인길;중도정인;전영선;연관희
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.23-29
    • /
    • 2004
  • 원전 구조물 및 기기의 내진설계를 위한 설계지진의 설정에는 결정론적 방법이나 확률론적 방법이 사용되어 왔다. 최근에는 확률론적 지진재해도 분석이 일반화 되면서 확률론적으로 설계지진 및 평가용 지진의 설정 방법이 합리적인 방법으로서 인식되어 많이 사용되고 있다. 우리나라의 경우 원전부지에 대한 확률론적 지진재해도 분석이 확률론적 지진위험도 평가의 일환으로 대부분 완료되어 있다. 본 연구에서는 확률론적 지진재해도의 재분해를 통하여 확률론적 시나리오 지진을 산정할 수 있는 기법을 확립하고 국내 원전 부지에 대한 확률론적 지진재해도 분석 결과를 이용하여 계산 예를 수행하였다. 이 기법을 사용하면 내진설계 및 내진안전성 평가에 활용할 수 있는 확률론적 시나리오 지진을 설정할 수 있어 매우 유용한 것으로 판단되며 합리적인 시나리오 지진의 산정을 위해서는 합리적인 지진구역도 및 감쇄식의 개발이 필요하다.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

한반도 주요 지체구조구별 지진학적 특성 (Seismic characteristics of Tectonic Provinces of The Korean Peninsula)

  • 이기화
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall
    • /
    • pp.64-71
    • /
    • 1999
  • Seismicity of the Korean Peninsula shows intraplate seismicity that has irregular pattern in both time and space. Seismic data of the Korean peninsula consists of historical earthquakes and instrumental earthquakes. In this study we devide these data into complete part and incomplete part and considering earthquake size uncertainty estimate seismic hazard parameters - activity rate λ, b value of Gutenberg-Richter relation and maximum possible earthquake IMAX by statistical method in each major tectonic provinces. These estimated values are expected to be important input parameters in probabilistic seismic hazard analysis and evaluation of design earthquake.

  • PDF

국내 원전부지 지진재해도 평가를 위한 제언 (Suggestion on Seismic Hazard Assessment of Nuclear Power Plant Sites in Korea)

  • 강태섭;유현재
    • 자원환경지질
    • /
    • 제51권2호
    • /
    • pp.203-211
    • /
    • 2018
  • 국내 원전부지 지진재해도 평가 경험을 바탕으로 향후 지진재해도 평가 시 보다 정량적인 평가를 위하여 고려하여야 할 사항에 대하여 점검하였다. 지진재해도 평가 방법을 양분하는 것으로 알려진 결정론적 방법과 확률론적 방법에 대하여 간단히 소개하였으며, 대부분의 후속 논의는 확률론적 지진재해도 평가에 집중하였다. 이 평가를 국내 원전부지에 적용한 과거 사례를 토대로 제기된 불확실성의 원인을 추적하였다. 확률론적 지진재해도 평가의 고려사항으로 전문가의 역할, 대표지진목록 작성, 지진원 설정, 지진-지반운동 관계식 개발 및 지진재해도 평가 절차에 대하여 토의하였다. 각 주제별로 불확실성을 증가시키는 요인을 분석하고 국내 환경에 적합한 해결 방안을 토의하였다.

방파제 구조물의 확률론적 지진위험도 분석 (Probabilistic Seismic Risk Analysis of Breakwater Structures)

  • 김상훈;이진학;김두기
    • 한국해안해양공학회지
    • /
    • 제17권1호
    • /
    • pp.32-40
    • /
    • 2005
  • 방파제 구조물에 대한 기존의 내진설계 및 내진성능검토에서는 주로 설계지진에 대하여 구조물의 변위 및 응력을 검토함으로써 지진 안전성을 평가한다. 그러나 이러한 검토가 주로 결정론적 접근방법에 의한 것으로 지진의 가장 큰 특성이라 할 수 있는 불확실성을 제대로 반영하기 어렵다. 본 연구에서는 지진발생과 지반계수의 화률론적 분포 특성을 고려한 확률론적 지진위험도 평가에 대해 연구하였다. 우선 항만구조물의 지진에 대한 구조적 취약성을 다수의 지진자료를 이용하여 평가하였고, 지진재해지도를 이용하여 해당 지역에서의 지진재해도를 산정하였으며, 이들을 조합함으로써 방파제 구조물의 확률론적 지진위험도를 평가하였다.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • 제33권6호
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.