• Title/Summary/Keyword: Probabilistic Safety Assessment (PSA)

Search Result 138, Processing Time 0.025 seconds

Simplification of the Plant Models in PSA

  • Kim, Myung-Ro;Lee, Beom-Su;Kang, Sun-Koo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.499-504
    • /
    • 1996
  • Current Probabilistic Safety Assessment (PSA) techniques are not usually utilized for day-to-day applications in nuclear power plants. The major reason for this anomaly is the complexity of plant models developed for PSA studies and the multitude of resulting fault trees. This impediment can be overcome by the use of simplified plant models. However, oversimplified models usually result in loss of valuable information and therefore. simplification approaches have to be used judiciously in order to achieve accurate and meaningful results. For this reason. development of an appropriate simplification approach must be performed using extreme caution followed with results verification in sequence as well as system levels. If there are no significant differences between the simplified and the original models, the simplified model can be efficiently used in the application of the PSA. This paper presents a methodology for how to develop a suitable simplification technique and the results of its verification for sample systems and sequences. The results show that the utilization of simplified plant models will significantly reduce the number of fault trees with no significant loss of accuracy.

  • PDF

해석적 방법에 의한 고장 수목 순환 논리의 분석 : 실제 PSA에의 적용 예

  • 양준언;황미정;한상훈;김태운
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.570-575
    • /
    • 1996
  • 1단계 확률론적 안전성 평가 (Level 1 Probabilistic Safety Assessment, PSA)를 수행할 때 나타나는 보조계통 고장 수목간의 순환 논리는 사고 경위 정량화를 위하여 해결되어야만 한다. 기존의 PSA에서는 이를 위하여 별도의 고장 수목을 다시 작성하였으나, 이 방법을 사용하기 위하여서는 보조계통 간의 관계를 검토하여야 하며, 이에 따른 별도의 고장 수목을 작성하여야 하는 등 추가적인 작업이 요구된다. 또한 기존 방법은 일부 최소 단절군이 생성되지 않는 약점을 갖고 있다. 이에 따라 한국원자력연구소에서는 해석적으로 순환 논리를 푸는 방법을 개발하였으며, 이를 PSA용 코드인 KIRAP 코드에 구축하였다. 이에 따라 기존 방법의 약점을 극복하고 고장 수목간의 순환 논리를 자동으로 풀 수 있게 되었다. 본 논문에서는 개발된 해석적 방법을 설명하며, 또한 이 방법을 실제 PSA에 적용하며 나타난 여러 현상에 대하여 살펴본다.

  • PDF

영광 3,4호기의 초기 부분충수 운전중 정지냉각 상실 사건에 대한 예비 확률론적 안전성 평가

  • 강대일;성태용;박진희;김길유
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.759-764
    • /
    • 1997
  • 본 논문에서는 영광 3,4호기의 초기 부분충수 운전중 정지냉각 상실 사건에 대하여 확률론적 안전성평가(Probabilistic Safety Assessment; PSA)를 수행하였다. 1단계 PSA 결과인 노심손상빈도에 크게 영향을 끼치는 인간행위는 THERP(technique for human error rate prediction)를 사용하여 평가하였고, 사고경위는 KIRAP(KAERI integrated reliability analysis code package)을 이용하여 정량화하였다. 영광 3,4호기의 부분충수 운전중 정지냉각 상실 사건에 대한 예비적인 PSA 결과, 노심손상 빈도는 1.43E-6로 평가되었고 노심손상 빈도에 주요하게 기여하는 것은 원자로 냉각재 보충에 대한 운전원의 진단 실패로 나타났다. 노심손상빈도를 감소하는 방안의 하나는 운전원의 진단오류 확률을 낮추기 위해 노심손상까지의 운전원 여유시간을 확장하는 것이다. 그러나 보다 구체적인 결과는 분석에 필요한 여러 가지 자료들을 검토하고 PSA를 다시 수행해야 얻을 수 있을 것으로 판단된다.

  • PDF

How to incorporate human failure event recovery into minimal cut set generation stage for efficient probabilistic safety assessments of nuclear power plants

  • Jung, Woo Sik;Park, Seong Kyu;Weglian, John E.;Riley, Jeff
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.110-116
    • /
    • 2022
  • Human failure event (HFE) dependency analysis is a part of human reliability analysis (HRA). For efficient HFE dependency analysis, a maximum number of minimal cut sets (MCSs) that have HFE combinations are generated from the fault trees for the probabilistic safety assessment (PSA) of nuclear power plants (NPPs). After collecting potential HFE combinations, dependency levels of subsequent HFEs on the preceding HFEs in each MCS are analyzed and assigned as conditional probabilities. Then, HFE recovery is performed to reflect these conditional probabilities in MCSs by modifying MCSs. Inappropriate HFE dependency analysis and HFE recovery might lead to an inaccurate core damage frequency (CDF). Using the above process, HFE recovery is performed on MCSs that are generated with a non-zero truncation limit, where many MCSs that have HFE combinations are truncated. As a result, the resultant CDF might be underestimated. In this paper, a new method is suggested to incorporate HFE recovery into the MCS generation stage. Compared to the current approach with a separate HFE recovery after MCS generation, this new method can (1) reduce the total time and burden for MCS generation and HFE recovery, (2) prevent the truncation of MCSs that have dependent HFEs, and (3) avoid CDF underestimation. This new method is a simple but very effective means of performing MCS generation and HFE recovery simultaneously and improving CDF accuracy. The effectiveness and strength of the new method are clearly demonstrated and discussed with fault trees and HFE combinations that have joint probabilities.

Methodology of seismic-response-correlation-coefficient calculation for seismic probabilistic safety assessment of multi-unit nuclear power plants

  • Eem, Seunghyun;Choi, In-Kil;Yang, Beomjoo;Kwag, Shinyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.967-973
    • /
    • 2021
  • In 2011, an earthquake and subsequent tsunami hit the Fukushima Daiichi Nuclear Power Plant, causing simultaneous accidents in several reactors. This accident shows us that if there are several reactors on site, the seismic risk to multiple units is important to consider, in addition to that to single units in isolation. When a seismic event occurs, a seismic-failure correlation exists between the nuclear power plant's structures, systems, and components (SSCs) due to their seismic-response and seismic-capacity correlations. Therefore, it is necessary to evaluate the multi-unit seismic risk by considering the SSCs' seismic-failure-correlation effect. In this study, a methodology is proposed to obtain the seismic-response-correlation coefficient between SSCs to calculate the risk to multi-unit facilities. This coefficient is calculated from a probabilistic multi-unit seismic-response analysis. The seismic-response and seismic-failure-correlation coefficients of the emergency diesel generators installed within the units are successfully derived via the proposed method. In addition, the distribution of the seismic-response-correlation coefficient was observed as a function of the distance between SSCs of various dynamic characteristics. It is demonstrated that the proposed methodology can reasonably derive the seismic-response-correlation coefficient between SSCs, which is the input data for multi-unit seismic probabilistic safety assessment.

Risk Monitor Development for On-Line Maintenance (가동중 정비를 위한 Risk Monitor 개발)

  • 김길유;한상훈;김태운
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.21-26
    • /
    • 1997
  • Korea Atomic Energy Research Institute (KAERI) developed a risk monitor called Risk Monster which supports for plant operators and maintenance schedulers to monitor plant risk and to avoid high peak risk by rearranging maintenance work schedule. Risk Monster can update the plant risk continuously according to the change of system/component configuration since Risk Monster reevaluates the plant risk based on the Probabilistic Safety Assessment (PSA) results. A brief description of Risk Monster is provided. The PSA model of UCN 3, 4 nuclear power plant was converted by KAERI to Risk Monster model. Using this Risk Monster model, a feasibility study of the on-line maintenance of an Essential Service Water (ESW) pump was performed. On-line maintenance of one ESW pump has been shown to be acceptably safe, and has economic benefits. In addition, it is not a violation of technical specification to continue plant operation with an out-of-service ESW pump.

  • PDF

Review Criteria for Reliability from Analysis of LOOP frequency in NPPs (소외전원상실사고 빈도수 분석을 통한 원전 신뢰도 검토기준)

  • Moon, Su-Cheol;Kim, Kern-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • LOOP(Loss of Offsite Power) and SBO(Station Blackout) events have been occurring in nuclear power plants should be reviewed and be controlled on important electrical equipments by professional engineer to prevent and to safety improvement from safety assessment and reliability analysis report. LOOP and SBO occasionally happened by internal or external causes. This paper contained that LOOP frequency in the United States NPPs and in the domestic NPPs have compared and analyzed data by the past lessons and probabilistic statistics. Additionally will be installed MG(Mobile Generator) according to the lessons of Fukushima nuclear accident in Japan, which CDF(Core Damage Frequency) and LOOP frequency have reconsidered. And this paper proposed to reduce reliability criteria using PSA(Probabilistic Safety Analysis).

A Study on Severe Accident Management Scheme using LOCA Sequence Database System (원자력발전소의 냉각재상실사고 특성DB를 활용한 중대사고 관리체계연구)

  • Choi, Young;Park, Jong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.172-178
    • /
    • 2014
  • In terms of an accident management, the cases causing severe core damage need to be analyzed and arranged systematically for an easy access to the results since the Three Mile Island (TMI) accident. The objectives of this paper are to explain how to identify the plant response and cope with its vulnerabilities using the probabilistic safety assessment (PSA) quantified results and severe accident database SARDB(Severe Accident Risk Data Bank) based on sequences analysis results. Although PSA has been performed for the Korean Standard Power Plants (KSNPs), and that it considered the necessary sequences for an assessment of the containment integrity. The developed Database (DB) system includes a graphical display for a plant and equipment status, previous research results by a knowledge-based technique, and the expected plant behaviour. The plant model used in this paper is oriented to the cases of loss of coolant accident (LOCA) is be used as a training simulator for a severe accident management.

Design Improvement for the Cooling System of the Interim Spent Fuel Storage Facility Using a PSA Method

  • Ko, Won-Il;Park, Jong-Won;Park, Seong-Won;Lee, Jae-Sol;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.440-451
    • /
    • 1996
  • With emphasis on safety, this study addresses for better design condition for the cooling system in a wet-type interim spent fuel storage facility, using a probabilistic safety assessment method. To incorporate the design renovation into the design phase, a simple approach is proposed. By taking the cooling system of a reference design, a fault tree analysis was performed to identify the weak point of the considered system, and then basic factors for design renovation were defined. A total of 21 design alternatives were selected through the combination of the basic factors. Finally, the optimum design alternative for the cooling system is derived by means of the cost and effect analysis based on the estimated cost, system reliability and assumed probabilistic safety criteria. With the assumption that the failure frequency of at-reactor spent fuel cooling system compiles with probabilistic safety criteria for the interim spent fuel cooling system, it was shown that the optimum alternative should have l00% cooling loop redundancy with one pump per cooling loop and a cleanup system installed separately from the main loop. Furthermore, it also should be classified into safety system. The result of this study can be used as a useful basis to identify factors of safety concern and to establish design requirements in the future. The method also can be applied for other nuclear facilities.

  • PDF

Effects of house load operation on PSA based on operational experiences in Korea

  • Lim, Hak Kyu;Park, Jong-hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2812-2820
    • /
    • 2020
  • House load operation (HLO) occurs when the generator supplies power to the house load without triggering reactor trips during grid disturbances. In Korea, the HLO capability of optimized power reactor 1000 (OPR1000) plants has prevented several reactor trips. Operational experiences demonstrate the difference in the reactor trip incidence due to grid disturbances between OPR1000 plants and Westinghouse plants in Korea, attributable to the availability of the HLO capability. However, probabilistic safety assessments (PSAs) for OPR1000 plants have not considered their specific design features in the initiating event analyses. In an at-power PSA, the HLO capability can affect the initiating event frequencies of general transients (GTRN) and loss of offsite power (LOOP), resulting from transients within the grid system. The initiating event frequencies of GTRN and LOOP for an OPR1000 plant are reduced by 17.7% and 78.7%, respectively, compared to the Korean industry-average initiating event frequencies, and its core damage frequency from internal events is reduced by 15.2%. The explicit consideration of the HLO capability in initiating event analyses makes significant changes in the risk contributions of the initiating events. Consequently, for more realistic at-power PSAs in Korea, we recommend incorporating plant-specific HLO-related design features when estimating initiating event frequencies.