• Title/Summary/Keyword: Probabilistic Safety Assessment(PSA)

Search Result 131, Processing Time 0.028 seconds

Probabilistic Safety Assessment of Nuclear Power Plants Using Bayes Method

  • Shim, Kyu-Bark
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.453-464
    • /
    • 2001
  • A commercial nuclear power station contains at least tow emergency diesel generators(EDG) to control the risk of severe core damage during station blackout accidents. Therefore, the reliability of the EDG's to start and load-run on demand must be maintained at a sufficiently high level. Probabilistic safety assessments(PSA) are increasingly being used to quantify the public risk of operating potentially hazardous systems such as nuclear power reactors. In this paper, to perform PSA, we will introduce three different types of data and use Bayes procedure to estimate the error rate of nuclear power plant EDG, and using practical examples, illustrate which method is more reasonable in our situation.

  • PDF

Evaluation of Human Reliability Analysis Results in Probabilistic Safety Assessment for Korea Standard Nuclear Power Plants (표준 원자력발전소 확률론적 안전성 평가의 인간 신뢰도 분석 평가)

  • 강대일;정원대;양준언
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • Based on ASME probabilistic risk assessment (PRA) and NEI PRA peer review guidance, we evaluate a human reliability analysis (HRA) in probabilistic safety assessment (PSA) for Korea standard nuclear power plants, Ulchin Unit 3&4, to improve it performed at under design. The HRA for Ulchin Unit 3&4 is assessed as higher than Grade I based on ASME PRA standard and as higher than Grade 2 based on NEI PRA peer review guidance. The major items to be improved identified through the evaluation process are the documentation, the systematic human reliability analysis, the participitation of operators in the works and review of HRA. We suggest the guidance on the identification and qualitative screening analysis for pre-accident human errors and solve some items to be improved using the suggested guidance.

A New Quantification Method for Multi-Unit Probabilistic Safety Assessment (다수기 PSA 수행을 위한 새로운 정량화 방법)

  • Park, Seong Kyu;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.97-106
    • /
    • 2020
  • The objective of this paper is to suggest a new quantification method for multi-unit probabilistic safety assessment (PSA) that removes the overestimation error caused by the existing delete-term approximation (DTA) based quantification method. So far, for the actual plant PSA model quantification, a fault tree with negates have been solved by the DTA method. It is well known that the DTA method induces overestimated core damage frequency (CDF) of nuclear power plant (NPP). If a PSA fault tree has negates and non-rare events, the overestimation in CDF drastically increases. Since multi-unit seismic PSA model has plant level negates and many non-rare events in the fault tree, it should be very carefully quantified in order to avoid CDF overestimation. Multi-unit PSA fault tree has normal gates and negates that represent each NPP status. The NPP status means core damage or non-core damage state of individual NPPs. The non-core damage state of a NPP is modeled in the fault tree by using a negate (a NOT gate). Authors reviewed and compared (1) quantification methods that generate exact or approximate Boolean solutions from a fault tree, (2) DTA method generating approximate Boolean solution by solving negates in a fault tree, and (3) probability calculation methods from the Boolean solutions generated by exact quantification methods or DTA method. Based on the review and comparison, a new intersection removal by probability (IRBP) method is suggested in this study for the multi-unit PSA. If the IRBP method is adopted, multi-unit PSA fault tree can be quantified without the overestimation error that is caused by the direct application of DTA method. That is, the extremely overestimated CDF can be avoided and accurate CDF can be calculated by using the IRBP method. The accuracy of the IRBP method was validated by simple multi-unit PSA models. The necessity of the IRBP method was demonstrated by the actual plant multi-unit seismic PSA models.

Probabilistic safety assessment-based importance analysis of cyber-attacks on nuclear power plants

  • Park, Jong Woo;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.138-145
    • /
    • 2019
  • With the application of digital technology to safety-critical infrastructures, cyber-attacks have emerged as one of the new dangerous threats. In safety-critical infrastructures such as a nuclear power plant (NPP), a cyber-attack could have serious consequences by initiating dangerous events or rendering important safety systems unavailable. Since a cyber-attack is conducted intentionally, numerous possible cases should be considered for developing a cyber security system, such as the attack paths, methods, and potential target systems. Therefore, prior to developing a risk-informed cyber security strategy, the importance of cyber-attacks and significant critical digital assets (CDAs) should be analyzed. In this work, an importance analysis method for cyber-attacks on an NPP was proposed using the probabilistic safety assessment (PSA) method. To develop an importance analysis framework for cyber-attacks, possible cyber-attacks were identified with failure modes, and a PSA model for cyber-attacks was developed. For case studies, the quantitative evaluations of cyber-attack scenarios were performed using the proposed method. By using quantitative importance of cyber-attacks and identifying significant CDAs that must be defended against cyber-attacks, it is possible to develop an efficient and reliable defense strategy against cyber-attacks on NPPs.

Application of probabilistic safety assessment (PSA) to the power reactor innovative small module (PRISM)

  • Alrammah, Ibrahim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3324-3335
    • /
    • 2022
  • Several countries show interest in the Generation-IV power reactor innovative small module (PRISM), including: Canada, Japan, Korea, Saudi Arabia and the United Kingdom. Generation IV International Forum (GIF) has recommended the utilizing of probabilistic safety assessment (PSA) in evaluating the safety of Generation-IV reactors. This paper reviews the PSA performed for PRISM using SAPHIRE 7.27 code. This work shows that the core damage frequency (CDF) of PRISM for a single module is estimated by 8.5E-8/year which is lower than the Generation-IV target that is 1E-6 core damage per year. The social risk of PRISM (likelihood of latent cancer fatality) with evacuation is estimated by 9.0E-12/year which is much lower than the basic safety objective (BSO) that is 1E-7/year. The social risk without evacuation is estimated by 1.2E- 11/year which is also much lower than the BSO. For the individual risk (likelihood of prompt fatality), it is concluded that it can be considered negligible with evacuation (1.0E-13/year). Assuming no evacuation, the individual risk is 2.7E-10/year which is again much lower than the BSO. In comparison with other PSAs performed for similar sodium fast reactors (SFRs), it shows that PRISM concept has the lowest CDF.

A Study on the Multiple Spurious Operation Analysis in Fire Events Probabilistic Safety Assessment of Domestic Nuclear Power Plant (국내 원자력발전소의 화재사건 확률론적안전성평가에서 다중오동작 분석 연구)

  • Kang, Dae Il;Jung, Yong Hun;Choi, Sun Yeong;Hwang, Mee-Jeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.136-143
    • /
    • 2018
  • In this study, we conducted a pilot study on the multiple spurious operations (MSO) analysis in the fire probabilistic safety assessment (PSA) of domestic nuclear power plant (NPP) to identify the degree of influence of the operator actions used in the MSO mitigation strategies. The MSO scenario of the domestic reference NPP selected for this study is refueling water tank (RWT) drain down event. It could be caused by spurious operations of the containment spray system (CSS) of the reference NPP. The RWT drain down event can be stopped by the main control room (MCR) operator actions for stopping the operation of CSS pump or closing the CSS motor operated valve if the containment spray actuation signal (CSAS) is spuriously actuated. Outside the MCR, it can be stopped by operator actions for closing the CSS manual valves or motor operated valve or stopping the operation of CSS pump. The quantification result of a fire PSA model that takes into account all recovery actions for the RWT drain down event lead to risk reduction by about 95%, compared with quantification result of fire PSA model without considering them. Among the various operator actions, the recovery action for the spurious CSAS operations and the operator action for the manual valve are identified as the most important operator actions. This study quantitatively showed the extent to which the operator actions used as MSO countermeasures have affected the fire PSA quantification results. In addition, we can see the rank of importance among the operator recovery actions in quantitative terms.

AIMS-MUPSA software package for multi-unit PSA

  • Han, Sang Hoon;Oh, Kyemin;Lim, Ho-Gon;Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1255-1265
    • /
    • 2018
  • The need for a PSA (Probabilistic Safety Assessment) for a multi-unit at a site is growing after the Fukushima accident. Many countries have been studying issues regarding a multi-unit PSA. One of these issues is the problem of many combinations of accident sequences in a multi-unit PSA. This paper deals with the methodology and software to quantify a PSA scenarios for a multi-unit site. Two approaches are developed to quantify a multi-unit PSA. One is to use a minimal cut set approach, and the other is to use a Monte Carlo approach.

Determination of Performance Indicator Thresholds Based on Typical PSA Results

  • Kang, Dae-Il;Kim, Kil-Yoo;Hwang, Mee-Jung;Sung, Key-Yong
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.485-496
    • /
    • 2004
  • Typical probabilistic safety assessment (PSA) results were used to estimate the performance indicator (PI) thresholds of unplanned reactor scram (URS) and safety system unavailability (SSU) for Korean nuclear power plants (NPPs). The changes in core damage frequency (${\Delta}$CDFs) of $10^{-6}/yr$, $10^{-5}/yr$, and $10^{-4}/yr$ were adopted as the risk criteria in setting up the PI thresholds. The PI thresholds for the URS were estimated using information pertaining to the initiating event frequencies, the CDF, and the CDF contribution of each initiating event. The PI thresholds of the SSU were estimated using information on the unavailability, the Fussell-Vesely importance, and the CDF.

Safety and Reliability Assessment for Nuclear Power Plants (원자력발전소의 안전성 및 신뢰도 평가)

  • 정원대;황미정
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.143-152
    • /
    • 1997
  • Probabilistic Safety Assessment(PSA) is an engineering analysis of the possible contributors to the risk from a nuclear power plant. It consist of three phases named as Level 1, 2 and 3. Level 1 PSA mainly focused in this paper is the phase of system analysis which includes the development of accident scenarios and the frequency estimation of each scenario. It covers also the system reliability analysis, component data analysis, and human reliability analysis. PSA have become a standard tool in safety evaluation of nuclear power plants. The main benefit of PSA is to provide insights into plant design, performance and environmental impacts, including the identification of dominant risk contributors and the comparison of options for reducing risk.

  • PDF

A Study on Reliability Estimation of Sequential-ordered Multiple Failure Modes in Nuclear System (원자력시스템에서 순차적 다중실패상태의 신뢰도 평가 방법에 관한 고찰)

  • Han, Seok-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A study on reliability estimation of sequential-ordered multiple failure modes, which are sequentially ordered between failure modes in a considering system, was performed. Especially, an approach to estimate the probabilities of failure modes has been proposed under an assumption that failure modes are mutually exclusive and sequentially ordered by only a critical variable. A feasibility of the proposed approach were studied by a practical example, which is a reliability estimation of passive safety systems for a probabilistic safety assessment(PSA) of a very high temperature reactor(VHTR) that is under development as a future nuclear system with enhanced safety features. It is difficult to define a robust failure state of this nuclear system because of its enhanced radiation release characteristics, so the new approach is a useful concept to estimate not only its safety but also a PSA. A feasibility study applied two failure modes(e.g., small and large release of radioactive materials) with considering the integrated behavior of this nuclear system. It is expected that the multiple release states for a practical estimation can be easily extended to the aforementioned example. It was found out that the proposed approach was a useful technique to cover the unfavorable features of this nuclear system as to performing a VHTR PSA.