• Title/Summary/Keyword: Probabilistic Safety Assessment(PSA)

Search Result 131, Processing Time 0.026 seconds

Vital area identification for the physical protection of NPPs in low-power and shutdown operations

  • Kwak, Myung Woong;Jung, Woo Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2888-2898
    • /
    • 2021
  • Vital area identification (VAI) is an essential procedure for the design of physical protection systems (PPSs) for nuclear power plants (NPPs). The purpose of PPS design is to protect vital areas. VAI has been improved continuously to overcome the shortcomings of previous VAI generations. In first-generation VAI, a sabotage fault tree was developed directly without reusing probabilistic safety assessment (PSA) results or information. In second-generation VAI, VAI model was constructed from all PSA event trees and fault trees. While in third-generation VAI, it was developed from the simplified PSA event trees and fault trees. While VAIs have been performed for NPPs in full-power operations, VAI for NPPs in low-power and shutdown (LPSD) operations has not been studied and performed, even though NPPs in LPSD operations are very vulnerable to sabotage due to the very crowded nature of NPP maintenance. This study is the first to research and apply VAI to LPSD operation of NPP. Here, the third-generation VAI method for full-power operation of NPP was adapted to the VAI of LPSD operation. In this study, LPSD VAI for a few plant operational states (POSs) was performed. Furthermore, the operation strategy of vital areas for both full-power and LPSD operations was discussed. The LPSD VAI method discussed in this paper can be easily applied to all POSs. The method and insights in this study can be important for future LPSD VAI that reflects various LPSD operational states. Regulatory bodies and electric utilities can take advantage of this LPSD VAI method.

Study on the Code System for the Off-Site Consequences Assessment of Severe Nuclear Accident (원전 중대사고 연계 소외결말해석 전산체계에 대한 고찰)

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.423-434
    • /
    • 2016
  • The importance of severe nuclear accidents and probabilistic safety assessment (PSA) were brought to international attention with the occurrence of severe nuclear accidents caused by the extreme natural disaster at Fukushima Daiichi nuclear power plant in Japan. In Korea, studies on level 3 PSA had made little progress until recently. The code systems of level 3 PSA, MACCS2 (MELCORE Accident Consequence Code System 2, US), COSYMA (COde SYstem from MAria, EU) and OSCAAR (Off-Site Consequence Analysis code for Atmospheric Releases in reactor accidents, JAPAN), were reviewed in this study, and the disadvantages and limitations of MACCS2 were also analyzed. Experts from Korea and abroad pointed out that the limitations of MACCS2 include the following: MACCS2 cannot simulate multi-unit accidents/release from spent fuel pools, and its atmospheric dispersion is based on a simple Gaussian plume model. Some of these limitations have been improved in the updated versions of MACCS2. The absence of a marine and aquatic dispersion model and the limited simulating range of food-chain and economic models are also important aspects that need to be improved. This paper is expected to be utilized as basic research material for developing a Korean code system for assessing off-site consequences of severe nuclear accidents.

An Evaluation of Operator's Action Time for Core Cooling Recovery Operation in Nuclear Power Plant (원자력발전소의 노심냉각회복 조치에 대한 운전원 조치시간 평가)

  • Bae, Yeon-Kyoung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.229-234
    • /
    • 2012
  • Operator's action time is evaluated from MAAP4 analysis used in conventional probabilistic safety assessment(PSA) of a nuclear power plant. MAAP4 code which was developed for severe accident analysis is too conservative to perform a realistic PSA. A best-estimate code such as RELAP5/MOD3, MARS has been used to reduce the conservatism of thermal hydraulic analysis. In this study, operator's action time of core cooling recovery operation is evaluated by using the MARS code, which its Fussell-Vessely(F-V) value was evaluated as highly important in a small break loss of coolant(SBLOCA) event and loss of component cooling water(LOCCW) event in previous PSA. The main conclusions were elicited : (1) MARS analysis provides larger time window for operator's action time than MAAP4 analysis and gives the more realistic time window in PSA (2) Sufficient operator's action time can reduce human error probability and core damage frequency in PSA.

Importance Analysis of In-Service Testing Components for Ulchin Unit 3 Using Risk-Informed In-Service Testing Approach

  • Kang, Dae-il;Kim, Kil-yoo;Ha, Jae-joo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.331-343
    • /
    • 2002
  • We performed an importance analysis of In-Service Testing (157) components for Ulchin Unit 3 using the integrated evaluation method for categorizing component safety significance developed in this study. The developed method is basically aimed at having a PSA expert perform an importance analysis using PSA and its related information. The importance analysis using the developed method is initiated by ranking the component importance using quantitative PSA information. The importance analysis of the IST components not modeled in the PSA is performed through the engineering judgment, based on the expertise of PSA, and the quantitative and qualitative information for the 157 components. The PSA scope for importance analysis includes not only Level 1 and 2 internal PSA but also Level 1 external and shutdown/low power operation PSA. The importance analysis results of valves show that 167 (26.55%) of the 629 IST valves are HSSCs and 462 (73.45%) are LSSCs. Those of pumps also show that 28 (70%)of the 40157 pumps are HSSCs and 12 (30%) are LSSCs.

Generic and adaptive probabilistic safety assessment models: Precursor analysis and multi-purpose utilization

  • Ayoub, Ali;Kroger, Wolfgang;Sornette, Didier
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2924-2932
    • /
    • 2022
  • Motivated by learning from experience and exploiting existing knowledge in civil nuclear operations, we have developed in-house generic Probabilistic Safety Assessment (PSA) models for pressurized and boiling water reactors. The models are computationally light, handy, transparent, user-friendly, and easily adaptable to account for major plant-specific differences. They cover the common internal initiating events, frontline and support systems reliability and dependencies, human-factors, common-cause failures, and account for new factors typically overlooked in many PSAs. For quantification, the models use generic US reliability data, precursor analysis reports, the ETHZ Curated Nuclear Events Database, and experts' opinions. Moreover, uncertainties in the most influential basic events are addressed. The generated results show good agreement with assessments available in the literature with detailed PSAs. We envision the models as an unbiased framework to measure nuclear operational risk with the same "ruler", and hence support inter-plant risk comparisons that are usually not possible due to differences in plant-specific PSA assumptions and scopes. The models can be used for initial risk screening, order-of-magnitude precursor analysis, and other research/pedagogic applications especially when no plant-specific PSAs are available. Finally, we are using the generic models for large-scale precursor analysis that will generate big picture trends, lessons, and insights.

A Method to Monitor the Reliability of In-house Power Supply Systems in Nuclear Power Plants Based on Probabilistic Assessment (확률론적 평가를 이용한 원자력발전소 소내전력공급계통 신뢰도 감시 방법)

  • Park, Jin-Yeub;Jerng, Dong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.444-449
    • /
    • 2009
  • This paper introduces a method to establish performance criteria of the in-house power supply system in nuclear power plants. The performance criteria of the system is presented in terms of the number of function failures and amount of the out-of-service time that can be allowed commensurate with the probabilistic safety assessment results of the nuclear power plants. To obtain the performance criteria such as reliability and availability, the functions of the system were analyzed and probabilistic assessment results were utilized. This method provides quantitative guidelines in selecting and monitoring system functions to determine an adequate level of maintenance quality in order to ensure the probabilistic goals for the safety of the nuclear power plants.

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ahmed, Ibrahim;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.764-775
    • /
    • 2020
  • Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process.

The Development of a Human Reliability Analysis System for Safety Assessment of a Nuclear Power Plants (원자력 발전소 안전성 평가를 위한 인간 신뢰도 분석 방법론 개발 및 지원 시스템 구축)

  • Kim, Seung-Hwn;Jung, Won-Dea
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.261-267
    • /
    • 2006
  • In order to perform a probabilistic safety assessment (PSA), it requires a large number of data for various fields. And the quality of a PSA results have become more important thing of the risk assessment. As part of enhancing the PSA qualify, Korea Atomic Energy Research Institute is developing a full power Human Reliability Analysis (HRA) calculator to manage human failure events (HFEs) and to calculate the diagnosis human error probabilities and execution human error probabilities. This paper introduces the development process and an overview of a standard HRA method for nuclear power plants. The study was carried out in three stages; 1) development of the procedures and rules for a standard HRA method. 2) design of a system structure, 3) development of the HRA calculator.

  • PDF

원자력발전소의 저출력/정지 확률론적 안전성 평가를 위한 인간신뢰도분석 절차서 개발

  • 강대일;성태용;김길유
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.179-184
    • /
    • 1997
  • 지금까지 수행되었던 원자력발전소의 확률론적 안전성 평가 (Probabilistic Safety Assessment; PSA) 결과, 노심손상 빈도의 30% - 70%가 인간행위와 관련이 있는 것으로 밝혀져 PSA에서 인간행위를 적절히 다루는 것은 매우 중요하다. 특히 원자력발전소의 정지운전인 경우에는 자동으로 작동하는 계통이 거의 없어 고장수목(fault tree)과 사건수목(event tree)의 모델링에 많은 운전인 행위가 포함되기 때문에 노심손상 빈도와 관련이 있는 인간행위는 전출력 운전(full power operation)에 대한 PSA 결과의 경우보다 많은 것으로 나타났다. PSA에서 인간신뢰도분석(human reliability analysis)은 PSA의 논리구조인 고장수목과 사건수목에 모델링될 인간행위를 파악하고 정량화하는 것이다. 현재 인간신뢰도분석은 인간행위에 대한 데이타의 부족과 인간행위 자체의 다변성(variability)으로 인해 분석에 어려움이 있고 분석자의 주관성이 개입될 여지가 많은 실정이며, 이에 따라 분석 결과에는 많은 불확실성을 내포하게 된다. (중략)

  • PDF