• Title/Summary/Keyword: Probabilistic Risk Assessment(PRA)

Search Result 29, Processing Time 0.021 seconds

RELIABILITY ANALYSIS OF DIGITAL SYSTEMS IN A PROBABILISTIC RISK ANALYSIS FOR NUCLEAR POWER PLANTS

  • Authen, Stefan;Holmberg, Jan-Erik
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.471-482
    • /
    • 2012
  • To assess the risk of nuclear power plant operation and to determine the risk impact of digital systems, there is a need to quantitatively assess the reliability of the digital systems in a justifiable manner. The Probabilistic Risk Analysis (PRA) is a tool which can reveal shortcomings of the NPP design in general and PRA analysts have not had sufficient guiding principles in modelling particular digital components malfunctions. Currently digital I&C systems are mostly analyzed simply and conventionally in PRA, based on failure mode and effects analysis and fault tree modelling. More dynamic approaches are still in the trial stage and can be difficult to apply in full scale PRA-models. As basic events CPU failures, application software failures and common cause failures (CCF) between identical components are modelled.The primary goal is to model dependencies. However, it is not clear which failure modes or system parts CCF:s should be postulated for. A clear distinction can be made between the treatment of protection and control systems. There is a general consensus that protection systems shall be included in PRA, while control systems can be treated in a limited manner. OECD/NEA CSNI Working Group on Risk Assessment (WGRisk) has set up a task group, called DIGREL, to develop taxonomy of failure modes of digital components for the purposes of PRA. The taxonomy is aimed to be the basis of future modelling and quantification efforts. It will also help to define a structure for data collection and to review PRA studies.

PRA: A PERSPECTIVE ON STRENGTHS, CURRENT LIMITATIONS, AND POSSIBLE IMPROVEMENTS

  • Mosleh, Ali
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • Probabilistic risk assessment (PRA) has been used in various technological fields to assist regulatory agencies, managerial decision makers, and systems designers in assessing and mitigating the risks inherent in these complex arrangements. Has PRA delivered on its promise? How do we gage PRA performance? Are our expectations about value of PRA realistic? Are there disparities between what we get and what we think we are getting form PRA and its various derivatives? Do current PRAs reflect the knowledge gained from actual events? How do we address potential gaps? These are some of the questions that have been raised over the years since the inception of the field more than forty years ago. This paper offers a brief assessment of PRA as a technical discipline in theory and practice, its key strengths and weaknesses, and suggestions on ways to address real and perceived shortcomings.

Integrated Level 1-Level 2 decommissioning probabilistic risk assessment for boiling water reactors

  • Mercurio, Davide;Andersen, Vincent M.;Wagner, Kenneth C.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.627-638
    • /
    • 2018
  • This article describes an integrated Level 1-Level 2 probabilistic risk assessment (PRA) methodology to evaluate the radiological risk during postulated accident scenarios initiated during the decommissioning phase of a typical Mark I containment boiling water reactor. The fuel damage scenarios include those initiated while the reactor is permanently shut down, defueled, and the spent fuel is located into the spent fuel storage pool. This article focuses on the integrated Level 1-Level 2 PRA aspects of the analysis, from the beginning of the accident to the radiological release into the environment. The integrated Level 1-Level 2 decommissioning PRA uses event trees and fault trees that assess the accident progression until and after fuel damage. Detailed deterministic severe accident analyses are performed to support the fault tree/event tree development and to provide source term information for the various pieces of the Level 1-Level 2 model. Source terms information is collected from accidents occurring in both the reactor pressure vessel and the spent fuel pool, including simultaneous accidents. The Level 1-Level 2 PRA model evaluates the temporal and physical changes in plant conditions including consideration of major uncertainties. The goal of this article is to provide a methodology framework to perform a decommissioning Probabilistic Risk Assessment (PRA), and an application to a real case study is provided to show the use of the methodology. Results will be derived from the integrated Level 1-Level 2 decommissioning PSA event tree in terms of fuel damage frequency, large release frequency, and large early release frequency, including uncertainties.

PRA RESEARCH AND THE DEVELOPMENT OF RISK-INFORMED REGULATION AT THE U.S. NUCLEAR REGULATORY COMMISSION

  • Siu, Nathan;Collins, Dorothy
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.349-364
    • /
    • 2008
  • Over the years, probabilistic risk assessment (PRA) research activities conducted at the U.S. Nuclear Regulatory Commission (NRC) have played an essential role in support of the agency's move towards risk-informed regulation. These research activities have provided the technical basis for NRC's regulatory activities in key areas; provided PRA methods, tools, and data enabling the agency to meet future challenges; supported the implementation of NRC's 1995 PRA Policy Statement by assessing key sources of risk; and supported the development of necessary technical and human resources supporting NRC's risk-informed activities. PRA research aimed at improving the NRC's understanding of risk can positively affect the agency's regulatory activities, as evidenced by three case studies involving research on fire PRA, human reliability analysis (HRA), and pressurized thermal shock (PTS) PRA. These case studies also show that such research can take a considerable amount of time, and that the incorporation of research results into regulatory practice can take even longer. The need for sustained effort and appropriate lead time is an important consideration in the development of a PRA research program aimed at helping the agency address key sources of risk for current and potential future facilities.

Evaluation of Human Reliability Analysis Results in Probabilistic Safety Assessment for Korea Standard Nuclear Power Plants (표준 원자력발전소 확률론적 안전성 평가의 인간 신뢰도 분석 평가)

  • 강대일;정원대;양준언
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • Based on ASME probabilistic risk assessment (PRA) and NEI PRA peer review guidance, we evaluate a human reliability analysis (HRA) in probabilistic safety assessment (PSA) for Korea standard nuclear power plants, Ulchin Unit 3&4, to improve it performed at under design. The HRA for Ulchin Unit 3&4 is assessed as higher than Grade I based on ASME PRA standard and as higher than Grade 2 based on NEI PRA peer review guidance. The major items to be improved identified through the evaluation process are the documentation, the systematic human reliability analysis, the participitation of operators in the works and review of HRA. We suggest the guidance on the identification and qualitative screening analysis for pre-accident human errors and solve some items to be improved using the suggested guidance.

Application of Probabilistic Risk Assessment to Space Launch Vehicle Propulsion System (우주 발사체 추진기관 시스템에 대한 확률적 위험 분석 적용)

  • Cho, Sang-Yeon;Shin, Myung-Ho;Kim, Yong-Wook;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.71-74
    • /
    • 2006
  • This study shows the historical background, and work flow of PRA (Probabilistic Risk Assessment) method which devised by NASA during the space development. It also illustrates the possibility of adoption of the method to evaluation of reliability KSLV project.

  • PDF

Development of Preventive Maintenance Plan based on PRA - Case Study of Pansong-Line Railway in Pusan - (위험도평가에 기초한 예방유지관리 계획 - 부산지하철 반송선의 설계 예 -)

  • Kim Jae-Won;Choi Young-Min;Kim Dae-Sung;Kim Kyo-Hun;Park Hyang-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.482-487
    • /
    • 2005
  • In the most current Turn-key bidding and Alternative design, is going to establish maintenance plan along with a economical assessment (VE/LCC assessment etc). Generally, establishment of maintenance plan is based on past experiences that are decided upon sensor position and amount with analytic or mechanical control section. But, it is more reasonable that maintenance plan based on level of significance for Probabilistic Risk, with presuming damage probability assessment of structural fracture scenarios. Therefore, in this study it is considered about the technique that an improved maintenance plan of railroad structures using PRA (Probabilistic Risk Assessment) on the basis of structural reliability theory. For this, in the paper, Preventive maintenance plan based on PRA is suggested with an application example of Pansong-Line (Line number 3) railway in Pusan works that actually executed Turn-key design.

  • PDF

Probabilistic Risk Assessment System Model and Methods for Construction Projects (건설공사의 확률적 위험도분석 시스템 모형 및 해석방법)

  • 조효남;최현호;김윤배
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.3-10
    • /
    • 1999
  • This paper presents probabilistic risk assessment system model and methods for general construction projects and demonstrates the applicability of the approach to a specific subway construction project. The proposed system model entitled Integrated Risk Assessment System(IRAS) for construction projects is composed of four steps, which is newly reorganized and improved in order to be easily adjusted for a systematic PRA of construction projects. Based on the proposed model, and integrated prototype software is then developing for computer-aided PRA of construction projects under the environment of the graphic-user interface, which will be successfully applied to construction projects.

  • PDF

Optimal Bayesian MCMC based fire brigade non-suppression probability model considering uncertainty of parameters

  • Kim, Sunghyun;Lee, Sungsu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2941-2959
    • /
    • 2022
  • The fire brigade non-suppression probability model is a major factor that should be considered in evaluating fire-induced risk through fire probabilistic risk assessment (PRA), and also uncertainty is a critical consideration in support of risk-informed performance-based (RIPB) fire protection decision-making. This study developed an optimal integrated probabilistic fire brigade non-suppression model considering uncertainty of parameters based on the Bayesian Markov Chain Monte Carlo (MCMC) approach on electrical fire which is one of the most risk significant contributors. The result shows that the log-normal probability model with a location parameter (µ) of 2.063 and a scale parameter (σ) of 1.879 is best fitting to the actual fire experience data. It gives optimal model adequacy performance with Bayesian information criterion (BIC) of -1601.766, residual sum of squares (RSS) of 2.51E-04, and mean squared error (MSE) of 2.08E-06. This optimal log-normal model shows the better performance of the model adequacy than the exponential probability model suggested in the current fire PRA methodology, with a decrease of 17.3% in BIC, 85.3% in RSS, and 85.3% in MSE. The outcomes of this study are expected to contribute to the improvement and securement of fire PRA realism in the support of decision-making for RIPB fire protection programs.

A State-of-the-Art of Probabilistic Seismic Fragility Analysis of Critical Structure (핵심 구조물의 확률론적 지진취약도 분석: 기술현황)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.226-232
    • /
    • 2000
  • Seismic probabilistic risk assessment(RA) rather than deterministic assessment provides more valuable information and insight for resolving seismic safety issues in nuclear power plant design. In the course of seismic PRA seismic fragility analysis is the most significant and essential phase especially for structural or mechanical engineers. Lately the seismic fragility analysis is taken as a useful tool in general structural engineering as well. A systemized and synthesized procedure or technology related to seismic fragility analysis of critical industrial facilities reflecting the unique experiences and database in Korea is urgently required. This paper gives a state-of-the-art reviews of PRA and briefly summarizes the technologies related to PRA and seismic fragility analysis before developing an unique technology considering characteristics of Korean database. Some key items to be resolved theoretically or technically are extracted and presented for the future research.

  • PDF