• Title/Summary/Keyword: Probabilistic Neural Network

Search Result 131, Processing Time 0.023 seconds

Damage assessment of cable stayed bridge using probabilistic neural network

  • Cho, Hyo-Nam;Choi, Young-Min;Lee, Sung-Chil;Hur, Choon-Kun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.483-492
    • /
    • 2004
  • This paper presents an efficient algorithm for the estimation of damage location and severity in bridge structures using Probabilistic Neural Network (PNN). Generally, the Back Propagation Neural Network (BPNN)-based damage detection methods need a lot of training patterns for neural network learning process and the optimum architecture of a BPNN is selected by trial and error. In this paper, the PNN instead of the conventional BPNN is used as a pattern classifier. The modal properties of damaged structure are somewhat different from those of undamaged one. The basic idea of proposed algorithm is that the PNN classifies a test pattern which consists of the modal characteristics from damaged structure, how close it is to each training pattern which is composed of the modal characteristics from various structural damage cases. In this algorithm, two PNNs are sequentially used. The first PNN estimates the damage location using mode shape and the results of the first PNN are put into the second PNN for the damage severity estimation using natural frequency. The proposed damage assessment algorithm using the PNN is applied to a cable-stayed bridge to verify its applicability.

Active Control of Structures Using Lattice Probabilistic Neural Network (격자 확률신경망 기법을 이용한 구조물의 능동 제어)

  • Chang, Seong-Kyu;Kim, Doo-Kie;Kim, Dong-Hyawn;Jung, Hie-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.978-982
    • /
    • 2007
  • A new neuro-control scheme for active control of structures is proposed. It utilizes lattice pattern of state vector as training data of probabilistic neural network (PNN). Therefore, it is the so-called lattice probabilistic neural network (LPNN). PNN makes control forces by using all the training patterns. Therefore, it takes much time to obtain a control force in application. This inevitably may delay the control action. However, control force of LPNN is calculated by using only the adjacent information of LPNN input. So, the response of LPNN is greatly faster than PNN. The proposed control algorithm is applied for one story building under California and El Centro earthquakes. Also, control results of the LPNN are compared with those of the conventional PNN. The structural responses have been suppressed effectively by the proposed algorithm.

  • PDF

Adaptive Probabilistic Neural Network for Prediction of Compressive Strength of Concrete (콘크리트 압축강도 추정을 위한 적응적 확률신경망 기법)

  • 김두기;이종재;장성규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.542-549
    • /
    • 2004
  • The compressive strength of concrete is commonly used criterion in producing concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, accurate and realistic strength estimation before the placement of concrete is being highly required. In this study, the estimation of the compressive strength of concrete was performed by probabilistic neural network (PNN) on the basis of concrete mix proportions. The estimation performance of PNN was improved by considering the correlation between input data and targeted output value. Adaptive probabilistic neural network (APNN) was proposed to automatically calculate the smoothing parameter in the conventional PNN by using the scheme of dynamic decay adjustment algorithm. The conventional PNN and APNN were applied to predict the compressive strength of concrete using actual test data of a concrete company. APNN showed better results than the conventional PNN in predicting the compressive strength of concrete.

  • PDF

Classifying Seafloor Sediments Using a Probabilistic Neural Network (확률 신경망에 의한 해저 저질의 식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.321-327
    • /
    • 2018
  • To classify seafloor sediments using a probabilistic neural network (PNN), the frequency-dependent characteristics of broadband acoustic scattering, which make it possible to qualitatively categorize seabed type, were collected from three different geographical areas in Korea. The echo data samples from three types of seafloor sediment were measured using a chirp sonar system operating over a frequency range of 20-220 kHz. The spectrum amplitudes for frequency responses of 35-75 kHz were fed into the PNN as input feature parameters. The PNN algorithm could successfully identify three seabed types: mud, mud/shell and concrete sediments. The percentage probabilities of the three seabed types being correctly classified were 86% for mud, 66% for mud/shell and 72% for concrete sediment.

Application of lattice probabilistic neural network for active response control of offshore structures

  • Kim, Dong Hyawn;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The reduction of the dynamic response of an offshore structure subjected to wind-generated random ocean waves is of extreme significance in the aspects of serviceability, fatigue life and safety of the structure. In this study, a new neuro-control scheme is applied to the vibration control of a fixed offshore platform under random wave loads to examine the applicability of the proposed method. It is called the Lattice Probabilistic Neural Network (LPNN), as it utilizes lattice pattern of state vectors as the training data of PNN. When control results of the LPNN are compared with those of the NN and PNN, LPNN showed better performance in effectively suppressing the structural responses in a shorter computational time.

The Performance Comparison of Classifier Algorithm for Pattern Recognition of Welding Flaws (용접결함의 패턴인식을 위한 분류기 알고리즘의 성능 비교)

  • Yoon, Sung-Un;Kim, Chang-Hyun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2006
  • In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

Probabilistic Neural Network for Prediction of Compressive Strength of Concrete (콘크리트 압축강도 추정을 위한 확률 신경망)

  • Kim, Doo-Kie;Lee, Jong-Jae;Chang, Seong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.159-167
    • /
    • 2004
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network which is an effective tool for pattern classification problem and gives a probabilistic result, not a deterministic value. In this study, verifications for the applicability of the probabilistic neural networks were performed using the test results of concrete compressive strength. The estimated strengths are also compared with the results of the actual compression tests. It has been found that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws (용접결함의 형상인식을 위한 신경회로망 알고리즘의 성능 비교)

  • 김재열;심재기;이동기;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-276
    • /
    • 2003
  • In this study, we compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to two algorithm. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we comfirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.

  • PDF

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.

Dividing Occluded Humans Based on an Artificial Neural Network for the Vision of a Surveillance Robot (감시용 로봇의 시각을 위한 인공 신경망 기반 겹친 사람의 구분)

  • Do, Yong-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.505-510
    • /
    • 2009
  • In recent years the space where a robot works has been expanding to the human space unlike traditional industrial robots that work only at fixed positions apart from humans. A human in the recent situation may be the owner of a robot or the target in a robotic application. This paper deals with the latter case; when a robot vision system is employed to monitor humans for a surveillance application, each person in a scene needs to be identified. Humans, however, often move together, and occlusions between them occur frequently. Although this problem has not been seriously tackled in relevant literature, it brings difficulty into later image analysis steps such as tracking and scene understanding. In this paper, a probabilistic neural network is employed to learn the patterns of the best dividing position along the top pixels of an image region of partly occlude people. As this method uses only shape information from an image, it is simple and can be implemented in real time.