• Title/Summary/Keyword: Probabilistic Neural Network

Search Result 131, Processing Time 0.025 seconds

A study on the Pattern Recognition of the EMG signals using Neural Network and Probabilistic modal for the two dimensional Motions described by External Coordinate (신경회로망과 확률모델을 이용한 2차원운동의 외부좌표에 대한 EMG신호의 패턴인식에 관한 연구)

  • Jang, Young-Gun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.65-70
    • /
    • 1991
  • A hybrid model which uses a probabilistic model and a MLP(multi layer perceptron) model for pattern recognition of EMG(electromyogram) signals is proposed in this paper. MLP model has problems which do not guarantee global minima of error due to learning method and have different approximation grade to bayesian probabilities due to different amounts and quality of training data, the number of hidden layers and hidden nodes, etc. Especially in the case of new test data which exclude design samples, the latter problem produces quite different results. The error probability of probabilistic model is closely related to the estimation error of the parameters used in the model and fidelity of assumtion. Generally, it is impossible to introduce the bayesian classifier to the probabilistic model of EMG signals because of unknown priori probabilities and is estimated by MLE(maximum likelihood estimate). In this paper we propose the method which get the MAP(maximum a posteriori probability) in the probabilistic model by estimating the priori probability distribution which minimize the error probability using the MLP. This method minimize the error probability of the probabilistic model as long as the realization of the MLP is optimal and approximate the minimum of error probability of each class of both models selectively. Alocating the reference coordinate of EMG signal to the outside of the body make it easy to suit to the applications which it is difficult to define and seperate using internal body coordinate. Simulation results show the benefit of the proposed model compared to use the MLP and the probabilistic model seperately.

  • PDF

Online Learning Control for Network-induced Time Delay Systems using Reset Control and Probabilistic Prediction Method (네트워크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습제어시스템)

  • Cho, Hyun-Cheol;Sim, Kwang-Yeul;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.929-938
    • /
    • 2009
  • This paper presents a novel control methodology for communication network based nonlinear systems with time delay nature. We construct a nominal nonlinear control law for representing a linear model and a reset control system which is aimed for corrective control strategy to compensate system error due to uncertain time delay through wireless communication network. Next, online neural control approach is proposed for overcoming nonstationary statistical nature in the network topology. Additionally, DBN (Dynamic Bayesian Network) technique is accomplished for modeling of its dynamics in terms of casuality, which is then utilized for estimating prediction of system output. We evaluate superiority and reliability of the proposed control approach through numerical simulation example in which a nonlinear inverted pendulum model is employed as a networked control system.

CCTV Based Gender Classification Using a Convolutional Neural Networks (컨볼루션 신경망을 이용한 CCTV 영상 기반의 성별구분)

  • Kang, Hyun Gon;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1943-1950
    • /
    • 2016
  • Recently, gender classification has attracted a great deal of attention in the field of video surveillance system. It can be useful in many applications such as detecting crimes for women and business intelligence. In this paper, we proposed a method which can detect pedestrians from CCTV video and classify the gender of the detected objects. So far, many algorithms have been proposed to classify people according the their gender. This paper presents a gender classification using convolutional neural network. The detection phase is performed by AdaBoost algorithm based on Haar-like features and LBP features. Classifier and detector is trained with data-sets generated form CCTV images. The experimental results of the proposed method is male matching rate of 89.9% and the results shows 90.7% of female videos. As results of simulations, it is shown that the proposed gender classification is better than conventional classification algorithm.

The Prediction of Compressive Strength of Sedimentary Rock using the Artificial Neural Networks (인공신경망을 이용한 퇴적암의 압축강도 예측)

  • Lee, Sang-Ho;Kim, Dong-Rak;Seo, In-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.43-47
    • /
    • 2012
  • A evaluation for the strength of rock includes a lot of uncertainty due to existence of discontinuity surface and weakness plain in the rock mass, so essential test results and other data for the resonable strength analysis are absolutely insufficient. Therefore, a analytical technique to reduce such uncertainty can be required. A probabilistic analysis technique has mainly to make up for the uncertainty to investigate the strength of rock mass. Recently, a artificial neural networks, as a more newly analysis method to solve several problems in the existing analysis methodology, trends to apply to study on the rock strength. In this study the unconfined compressive strength from basic physical property values of sedimentary rock, black shale and red shale, distributed in Daegu metropolitan area is estimated, using the artificial neural networks. And the applicability of the analysis method is investigated. From the results, it is confirmed that the unconfined compressive strength of the sedimentary rock can be easily and efficiently predicted by the analysis technique with the artificial neural networks.

TG-SPSR: A Systematic Targeted Password Attacking Model

  • Zhang, Mengli;Zhang, Qihui;Liu, Wenfen;Hu, Xuexian;Wei, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2674-2697
    • /
    • 2019
  • Identity authentication is a crucial line of defense for network security, and passwords are still the mainstream of identity authentication. So far trawling password attacking has been extensively studied, but the research related with personal information is always sporadic. Probabilistic context-free grammar (PCFG) and Markov chain-based models perform greatly well in trawling guessing. In this paper we propose a systematic targeted attacking model based on structure partition and string reorganization by migrating the above two models to targeted attacking, denoted as TG-SPSR. In structure partition phase, besides dividing passwords to basic structure similar to PCFG, we additionally define a trajectory-based keyboard pattern in the basic grammar and introduce index bits to accurately characterize the position of special characters. Moreover, we also construct a BiLSTM recurrent neural network classifier to characterize the behavior of password reuse and modification after defining nine kinds of modification rules. Extensive experimental results indicate that in online attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 275%, and respectively outperforms its foremost counterparts, Personal-PCFG, TarGuess-I, by about 70% and 19%; In offline attacking, TG-SPSR outperforms traditional trawling attacking algorithms by average about 90%, outperforms Personal-PCFG and TarGuess-I by 85% and 30%, respectively.

Performance Improvement of Automatic Basal Cell Carcinoma Detection Using Half Hanning Window (Half Hanning 윈도우 전처리를 통한 기저 세포암 자동 검출 성능 개선)

  • Park, Aa-Ron;Baek, Seong-Joong;Min, So-Hee;You, Hong-Yoen;Kim, Jin-Young;Hong, Sung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.105-112
    • /
    • 2006
  • In this study, we propose a simple preprocessing method for classification of basal cell carcinoma (BCC), which is one of the most common skin cancer. The preprocessing step consists of data clipping with a half Hanning window and dimension reduction with principal components analysis (PCA). The application of the half Hanning window deemphasizes the peak near $1650cm^{-1}$ and improves classification performance by lowering the false negative ratio. Classification results with various classifiers are presented to show the effectiveness of the proposed method. The classifiers include maximum a posteriori probability (MAP), k-nearest neighbor (KNN), probabilistic neural network (PNN), multilayer perceptron(MLP), support vector machine (SVM) and minimum squared error (MSE) classification. Classification results with KNN involving 216 spectra preprocessed with the proposed method gave 97.3% sensitivity, which is very promising results for automatic BCC detection.

  • PDF

Structural Reliability Analysis via Response Surface Method (응답면 기법을 이용한 구조 신뢰성 해석)

  • Yang, Y.S.;Lee, J.O.;Kim, P.Y.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.98-108
    • /
    • 1996
  • In the reliability analysis of general structures, the limit state equations are implicit and cannot be described in closed form. Thus, sampling methods such as the Crude Monte-Carlo simulation, and probabilistic FEM are often used, but these methods are not so effective in view of computational cost, because a number of structural analysis are required and the derivatives must be calculated for probabilistic FEM. Alternatively the response surface approach, which approximates the limit state surface by using several results of structural analysis in the region adjacent to MPFP, could be applied effectively. In this paper, the central composite design, Bucher-Bourgund method and the approximation method using artificial neural network are studied for the calculation of probability of failure by the response surface method. Through the example comparisons, it is found that Bucher-Bourgund method is very effective and Neural network method for the reliability analysis is comparable with other methods. Specially, the central composite design method is found to be rational and useful in terms of mathematical consistency and accuracy.

  • PDF

Development of Optimal Rehabilitation Model for Water Distribution System Based on Prediction of Pipe Deterioration (I) - Theory and Development of Model - (상수관로의 노후도 예측에 근거한 최적 개량 모형의 개발 (I) - 이론 및 모형개발 -)

  • Kim, Eung-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.45-59
    • /
    • 2003
  • The method in this study, which is more efficiency than the existing method, propose the optimal rehabilitation model based on the deterioration prediction of the laying pipe by using the deterioration survey method of the water distribution system. The deterioration prediction model divides the deterioration degree of each pipe into 5 degree by using the probabilistic neural network. Also, the optimal residual durability is estimated by the calculated deterioration degree in each pipe and pipe diameter. The optimal rehabilitation model by integer programming base on the shortest path can calculate a time and cost of maintenance, rehabilitation, and replacement. Also, the model is divided into budget constraint and no budget constraint. Consequently, the model proposed by the study can be utilized as the quantitative method for the management of the water distribution system.

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

Generation of Pseudo Porosity Logs from Seismic Data Using a Polynomial Neural Network Method (다항식 신경망 기법을 이용한 탄성파 탐사 자료로부터의 유사공극률 검층자료 생성)

  • Choi, Jae-Won;Byun, Joong-Moo;Seol, Soon-Jee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.665-673
    • /
    • 2011
  • In order to estimate the hydrocarbon reserves, the porosity of the reservoir must be determined. The porosity of the area without a well is generally calculated by extrapolating the porosity logs measured at wells. However, if not only well logs but also seismic data exist on the same site, the more accurate pseudo porosity log can be obtained through artificial neural network technique by extracting the relations between the seismic data and well logs at the site. In this study, we have developed a module which creates pseudo porosity logs by using the polynomial neural network method. In order to obtain more accurate pseudo porosity logs, we selected the seismic attributes which have high correlation values in the correlation analysis between the seismic attributes and the porosity logs. Through the training procedure between selected seismic attributes and well logs, our module produces the correlation weights which can be used to generate the pseudo porosity log in the well free area. To verify the reliability and the applicability of the developed module, we have applied the module to the field data acquired from F3 Block in the North Sea and compared the results to those from the probabilistic neural network method in a commercial program. We could confirm the reliability of our module because both results showed similar trend. Moreover, since the pseudo porosity logs from polynomial neural network method are closer to the true porosity logs at the wells than those from probabilistic method, we concluded that the polynomial neural network method is effective for the data sets with insufficient wells such as F3 Block in the North Sea.