• 제목/요약/키워드: Probabilistic Neural Network

검색결과 131건 처리시간 0.026초

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • ;;;장성규
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.

확률신경망을 이용한 철도 판형교의 손상평가 (Damage Assessment of Plate Gider Railway Bridge Based on the Probabilistic Neural Network)

  • 조효남;이성칠;강경구;오달수
    • 한국전산구조공학회논문집
    • /
    • 제16권3호
    • /
    • pp.229-236
    • /
    • 2003
  • 손상평가를 위해 많은 연구자들에 의해 인공신경망이 이용되어 왔다. 그러나, 인공신경망을 이용한 손상평가에 있어 정확성과 능률성을 제고하기 위해서는 몇가지 문제점이 있다. 기존의 인공신경망 특히 역전파신경망(BPNN)의 경우 신경망 학습을 위해 많은 수의 학습패턴을 필요로 하며, 또한 신경망의 구조와 해의 수렴간에 어떤 확정적인 관계가 존재하지 않는다. 따라서 신경망의 은닉층의 수와 한 은닉층에서의 노드수는 시행착오적으로 결정되게 된다. 이러한 많은 훈련패턴의 준비와 최적의 신경망 구조 결정을 위해서는 많은 시간이 필요하다. 본 논문에서는 이러한 단점들을 극복하기 위해 확률신경망을 패턴분류기로 사용하였다. 이를 판형철도교의 손상평가에 수치해석적으로 검증하였다. 또한 확률신경망을 이용한 철도판형교 손상평가시 적절한 훈련패턴 선택을 위해 모드형상과 고유진동수를 사용한 경우의 적용성에 대해 검토하였다.

급배수관망 누수예측을 위한 확률신경망 (Probabilistic Neural Network for Prediction of Leakage in Water Distribution Network)

  • 하성룡;류연희;박상영
    • 상하수도학회지
    • /
    • 제20권6호
    • /
    • pp.799-811
    • /
    • 2006
  • As an alternative measure to replace reactive stance with proactive one, a risk based management scheme has been commonly applied to enhance public satisfaction on water service by providing a higher creditable solution to handle a rehabilitation problem of pipe having high potential risk of leaks. This study intended to examine the feasibility of a simulation model to predict a recurrence probability of pipe leaks. As a branch of the data mining technique, probabilistic neural network (PNN) algorithm was applied to infer the extent of leaking recurrence probability of water network. PNN model could classify the leaking level of each unit segment of the pipe network. Pipe material, diameter, C value, road width, pressure, installation age as input variable and 5 classes by pipe leaking probability as output variable were built in PNN model. The study results indicated that it is important to pay higher attention to the pipe segment with the leak record. By increase the hydraulic pipe pressure to meet the required water demand from each node, simulation results indicated that about 6.9% of total number of pipe would additionally be classified into higher class of recurrence risk than present as the reference year. Consequently, it was convinced that the application of PNN model incorporated with a data base management system of pipe network to manage municipal water distribution network could make a promise to enhance the management efficiency by providing the essential knowledge for decision making rehabilitation of network.

초음파 검사 기반의 용접결함 분류성능 개선에 관한 연구 (Performance Comparison of Neural Network Algorithm for Shape Recognition of Welding Flaws)

  • 김재열;윤성운;김창현;송경석;양동조
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.287-292
    • /
    • 2004
  • In this study, we made a comparative study of backpropagation neural network and probabilistic neural network and bayesian classifier and perceptron as shape recognition algorithm of welding flaws. For this purpose, variables are applied the same to four algorithms. Here, feature variable is composed of time domain signal itself and frequency domain signal itself, Through this process, we confirmed advantages/disadvantages of four algorithms and identified application methods of few algorithms.

  • PDF

손상패턴의 확률밀도함수에 따른 구조물 손상추정 (Structural Damage Assessment Using the Probability Distribution Model of Damage Patterns)

  • 조효남;이성칠;오달수;최윤석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.357-365
    • /
    • 2003
  • The major problems with the conventional neural network, especially Back Propagation Neural Network, arise from the necessity of many training data for neural network learning and ambiguity in the relation of neural network structure to the convergence of solution. In this paper, the PNN is used as a pattern classifier to detect the damage of structure to avoid those drawbacks of the conventional neural network. In the PNN-based pattern classification problems, the probability density function for patterns is usually assumed by Gaussian distribution. But, in this paper, several probability density functions are investigated in order to select the most approriate one for structural damage assessment.

  • PDF

PLDA 모델 적응과 데이터 증강을 이용한 짧은 발화 화자검증 (Short utterance speaker verification using PLDA model adaptation and data augmentation)

  • 윤성욱;권오욱
    • 말소리와 음성과학
    • /
    • 제9권2호
    • /
    • pp.85-94
    • /
    • 2017
  • Conventional speaker verification systems using time delay neural network, identity vector and probabilistic linear discriminant analysis (TDNN-Ivector-PLDA) are known to be very effective for verifying long-duration speech utterances. However, when test utterances are of short duration, duration mismatch between enrollment and test utterances significantly degrades the performance of TDNN-Ivector-PLDA systems. To compensate for the I-vector mismatch between long and short utterances, this paper proposes to use probabilistic linear discriminant analysis (PLDA) model adaptation with augmented data. A PLDA model is trained on vast amount of speech data, most of which have long duration. Then, the PLDA model is adapted with the I-vectors obtained from short-utterance data which are augmented by using vocal tract length perturbation (VTLP). In computer experiments using the NIST SRE 2008 database, the proposed method is shown to achieve significantly better performance than the conventional TDNN-Ivector-PLDA systems when there exists duration mismatch between enrollment and test utterances.

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • 제78권5호
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.

강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용 (Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures)

  • 박승희;이종재;윤정방;노용래
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.53-62
    • /
    • 2005
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용 (Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures)

  • 박승희;이종재;윤정방;노용래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.625-632
    • /
    • 2004
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

  • PDF