• Title/Summary/Keyword: Probabilistic Broadcasting

Search Result 25, Processing Time 0.022 seconds

Task offloading scheme based on the DRL of Connected Home using MEC (MEC를 활용한 커넥티드 홈의 DRL 기반 태스크 오프로딩 기법)

  • Ducsun Lim;Kyu-Seek Sohn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.61-67
    • /
    • 2023
  • The rise of 5G and the proliferation of smart devices have underscored the significance of multi-access edge computing (MEC). Amidst this trend, interest in effectively processing computation-intensive and latency-sensitive applications has increased. This study investigated a novel task offloading strategy considering the probabilistic MEC environment to address these challenges. Initially, we considered the frequency of dynamic task requests and the unstable conditions of wireless channels to propose a method for minimizing vehicle power consumption and latency. Subsequently, our research delved into a deep reinforcement learning (DRL) based offloading technique, offering a way to achieve equilibrium between local computation and offloading transmission power. We analyzed the power consumption and queuing latency of vehicles using the deep deterministic policy gradient (DDPG) and deep Q-network (DQN) techniques. Finally, we derived and validated the optimal performance enhancement strategy in a vehicle based MEC environment.

Error Probability Expressions for Frame Synchronization Using Differential Correlation

  • Kim, Sang-Tae;Kim, Jae-Won;Shin, Dong-Joon;Chang, Dae-Ig;Sung, Won-Jin
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.582-591
    • /
    • 2010
  • Probabilistic modeling and analysis of correlation metrics have been receiving considerable interest for a long period of time because they can be used to evaluate the performance of communication receivers, including satellite broadcasting receivers. Although differential correlators have a simple structure and practical importance over channels with severe frequency offsets, closedform expressions for the output distribution of differential correlators do not exist. In this paper, we present detection error probability expressions for frame synchronization using differential correlation, and demonstrate their accuracy over channel parameters of practical interest. The derived formulas are presented in terms of the Marcum Q-function, and do not involve numerical integration, unlike the formulas derived in some previous studies. We first determine the distributions and error probabilities for single-span differential correlation metric, and then extend the result to multispan differential correlation metric with certain approximations. The results can be used for the performance analysis of various detection strategies that utilize the differential correlation structure.

A Study on Diabetes Management System Based on Logistic Regression and Random Forest

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.61-68
    • /
    • 2024
  • In the quest for advancing diabetes diagnosis, this study introduces a novel two-step machine learning approach that synergizes the probabilistic predictions of Logistic Regression with the classification prowess of Random Forest. Diabetes, a pervasive chronic disease impacting millions globally, necessitates precise and early detection to mitigate long-term complications. Traditional diagnostic methods, while effective, often entail invasive testing and may not fully leverage the patterns hidden in patient data. Addressing this gap, our research harnesses the predictive capability of Logistic Regression to estimate the likelihood of diabetes presence, followed by employing Random Forest to classify individuals into diabetic, pre-diabetic or nondiabetic categories based on the computed probabilities. This methodology not only capitalizes on the strengths of both algorithms-Logistic Regression's proficiency in estimating nuanced probabilities and Random Forest's robustness in classification-but also introduces a refined mechanism to enhance diagnostic accuracy. Through the application of this model to a comprehensive diabetes dataset, we demonstrate a marked improvement in diagnostic precision, as evidenced by superior performance metrics when compared to other machine learning approaches. Our findings underscore the potential of integrating diverse machine learning models to improve clinical decision-making processes, offering a promising avenue for the early and accurate diagnosis of diabetes and potentially other complex diseases.

A Step-by-Step Primality Test (단계적 소수 판별법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.103-109
    • /
    • 2013
  • Miller-Rabin method is the most prevalently used primality test. However, this method mistakenly reports a Carmichael number or semi-prime number as prime (strong lier) although they are composite numbers. To eradicate this problem, it selects k number of m, whose value satisfies the following : m=[2,n-1], (m,n)=1. The Miller-Rabin method determines that a given number is prime, given that after the computation of $n-1=2^sd$, $0{\leq}r{\leq}s-1$, the outcome satisfies $m^d{\equiv}1$(mod n) or $m^{2^rd}{\equiv}-1$(mod n). This paper proposes a step-by-step primality testing algorithm that restricts m=2, hence achieving 98.8% probability. The proposed method, as a first step, rejects composite numbers that do not satisfy the equation, $n=6k{\pm}1$, $n_1{\neq}5$. Next, it determines prime by computing $2^{2^{s-1}d}{\equiv}{\beta}_{s-1}$(mod n) and $2^d{\equiv}{\beta}_0$(mod n). In the third step, it tests ${\beta}_r{\equiv}-1$ in the range of $1{\leq}r{\leq}s-2$ for ${\beta}_0$ > 1. In the case of ${\beta}_0$ = 1, it retests m=3,5,7,11,13,17 sequentially. When applied to n=[101,1000], the proposed algorithm determined 96.55% of prime in the initial stage. The remaining 3% was performed for ${\beta}_0$ >1 and 0.55% for ${\beta}_0$ = 1.

Design and Evaluation of a Fuzzy Logic based Multi-hop Broadcast Algorithm for IoT Applications (IoT 응용을 위한 퍼지 논리 기반 멀티홉 방송 알고리즘의 설계 및 평가)

  • Bae, Ihn-han;Kim, Chil-hwa;Noh, Heung-tae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2016
  • In the future network such as Internet of Things (IoT), the number of computing devices are expected to grow exponentially, and each of the things communicates with the others and acquires information by itself. Due to the growing interest in IoT applications, the broadcasting in Opportunistic ad-hoc networks such as Machine-to-Machine (M2M) is very important transmission strategy which allows fast data dissemination. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose a fuzzy logic based probabilistic multi-hop broadcast (FPMCAST) algorithm which statistically disseminates data accordingly to the remaining energy rate, the replication density rate of sending node, and the distance rate between sending and receiving nodes. In proposed FPMCAST, the inference engine is based the fuzzy rule base which is consists of 27 if-then rules. It maps input and output parameters to membership functions of input and output. The output of fuzzy system defines the fuzzy sets for rebroadcasting probability, and defuzzification is used to extract a numeric result from the fuzzy set. Here Center of Gravity (COG) method is used to defuzzify the fuzzy set. Then, the performance of FPMCAST is evaluated through a simulation study. From the simulation, we demonstrate that the proposed FPMCAST algorithm significantly outperforms flooding and gossiping algorithms. Specially, the FPMCAST algorithm has longer network lifetime because the residual energy of each node consumes evenly.