• 제목/요약/키워드: Pro-inflammatory Cytokines

검색결과 900건 처리시간 0.034초

미강에탄올추출물의 RAW264.7 세포에서 항염증효과 (Anti-Inflammatory Effects of Rice Bran Ethanol Extract in Murine Macrophage RAW 264.7 Cells)

  • 박정숙;김미혜
    • 약학회지
    • /
    • 제55권6호
    • /
    • pp.456-461
    • /
    • 2011
  • The aim of the present study is to investigate the anti-inflammatory effect of a Rice Bran Ethanol Extract (RBE). Inflammation, such as a bacterial infection in vivo metabolites, such as external stimuli or internal stimuli to the defense mechanisms of the biological tissue a variety of intracellular regulatory factors deulin inflammatory TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-8, such as proinflammatory cytokines, prostagrandin, lysosomal enzyme, free radicals are involved in a variety of mediators. The present study was designed to determine the effect of the RBE on pro-inflammatory factors such as NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 in lipopolysaccharide (LPS) - stimulated RAW264.7 macrophages cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of RBE, amount of NO was measured using the NO detection kit and the iNOS expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, the RBE reduced NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production without cytotoxicity. Our results suggest that the RBE may have an anti-inflammatory property through suppressing inflammatory mediator productions and appears to be useful as an anti-inflammatory material.

Modulation of Aqueous Extracted Angelicae sinensis Radix on Nitric Oxide Production and Pro-inflammatory Cytokine Gene Expressions in RAW 264.7 Macrophage Cells

  • Lee Young Sun;Han Ok Kyung;Shin Sang Woo;Park Jong Hyun;Kwon Young Kyu
    • 동의생리병리학회지
    • /
    • 제17권6호
    • /
    • pp.1514-1518
    • /
    • 2003
  • Angelica sinensis radix, Danggui, is a traditional oriental medication, which has been used to modulate immune response. We report here that aqueous extract of Angelica sinensis radix (ASR) can induces NO production, and inhibit LPS-induced NO production in dose-dependent manner in RAW 264.7 macrophage cells. ASR also induces iNOS mRNA and iNOS protein expression, and exhibit inhibitory effect on iNOS mRNA and protein expression in a dose-dependent manner in LPS-stimulated RAW 264.7 macrophage cells. Cytokines involved in the regulation of inflammatory reaction and immune response may play a role in the pathogenesis. ASR induces. pro-inflammatory cytokine gene expression (IL-1α, IL-1β and IL-6 gene) in a dose-dependent manner, and inhibits the expressions of these cytokines in LPS-stimulated RAW 264.7 macrophage cells. These data indicate that (1) ASR may be a potential therapeutic modulator of NO synthesis in various pathological conditions, and (2) the immunomodulatory effects of ASR may be, in part, associated with the inducing or suppression of pro-inflammatory cytokine gene expressions.

Marein Prevented LPS-Induced Osteoclastogenesis by Regulating the NF-κB Pathway In Vitro

  • Li, Yuling;Zhang, Jing;Yan, Caiping;Chen, Qian;Xiang, Chao;Zhang, Qingyan;Wang, Xingkuan;Jiang, Ke
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.141-148
    • /
    • 2022
  • Many bone diseases such as osteolysis, osteomyelitis, and septic arthritis are caused by gram-negative bacterial infection, and lipopolysaccharide (LPS), a bacterial product, plays an essential role in this process. Drugs that inhibit LPS-induced osteoclastogenesis are urgently needed to prevent bone destruction in infective bone diseases. Marein, a major bioactive compound of Coreopsis tinctoria, possesses anti-oxidative, anti-inflammatory, anti-hypertensive, anti-hyperlipidemic, and anti-diabetic effects. In this study, we measured the effect of marein on RAW264.7 cells by CCK-8 assay and used TRAP staining to determine osteoclastogenesis. The levels of osteoclast-related genes and NF-κB-related proteins were then analyzed by western blot, and the levels of pro-inflammatory cytokines were quantified by ELISA. Our results showed that marein inhibited LPS-induced osteoclast formation by osteoclast precursor RAW264.7 cells. The effect of marein was related to its inhibitory function on expressions of pro-inflammatory cytokines and osteoclast-related genes containing RANK, TRAF6, MMP-9, CK, and CAII. Additionally, marein leads to markedly inhibited NF-κB signaling pathway activation in LPS-induced RAW264.7 cells. Concurrently, when the NF-κB signaling pathway was inhibited, osteoclast formation and pro-inflammatory cytokine expression were decreased. Collectively, marein could inhibit LPS-induced osteoclast formation in RAW264.7 cells via regulating the NF-κB signaling pathway. Our data demonstrate that marein might be a potential drug for bacteria-induced bone destruction disease. Our findings provide new insights into LPS-induced bone disease.

Co-stimulation of TLR4 and Dectin-1 Induces the Production of Inflammatory Cytokines but not TGF-${\beta}$ for Th17 Cell Differentiation

  • Chang, JiHoon;Kim, Byeong Mo;Chang, Cheong-Hee
    • IMMUNE NETWORK
    • /
    • 제14권1호
    • /
    • pp.30-37
    • /
    • 2014
  • Collaboration of TLR and non-TLR pathways in innate immune cells, which acts in concert for the induction of inflammatory cytokines, can mount a specific adaptive immune response tailored to a pathogen. Here, we show that murine DC produced increased IL-23 and IL-6 when they were treated with LPS together with curdlan that activates TLR4 and dectin-1, respectively. We also found that the induction of the inflammatory cytokine production by LPS and curdlan requires activation of IKK. However, the same treatment did not induce DC to produce a sufficient amount of TGF-${\beta}$. As a result, the conditioned media from DC treated with LPS and curdlan was not able to direct $CD4^+$ T cells to Th17 cells. Addition of TGF-${\beta}$ but not IL-6 or IL-$1{\beta}$ was able to promote IL-17 production from $CD4^+$ T cells. Our results showed that although signaling mediated by LPS together with curdlan is a potent stimulator of DC to secrete many pro-inflammatory cytokines, TGF-${\beta}$ production is a limiting factor for promoting Th17 immunity.

연교 추출물의 Microglia에서 LPS에 의해 유도되는 염증매개물질 생성 억제 효과 (Ethanol Extract of Forsythiae Fructus Inhibits the Production of Inflammatory Mediators in LPS-stimulated BV-2 Microglial Cells)

  • 김성윤;박용기
    • 대한본초학회지
    • /
    • 제23권3호
    • /
    • pp.93-102
    • /
    • 2008
  • Objectives : Forsythiae Fructus (Forsythia koreana Nakai) has been used anti-inflammatory, diuretics, antidote, and antibacterials in traditional herbal medicine. The present study is focused on the inhibitory effect of Forsythiae Fructus ethanol extract (FF-E) on the production of inflammatory mediators such as NO, iNOS and proinflammatory cytokines ($TNF-{\alpha}$, $IL-1{\beta}$ and IL-6) in LPS-stimulated BV-2 cells, a mouse microglial cell line, and investigated the scavenging activity of FF-E. Methods : BV-2 cells were pre-incubated with FF-E for 30 min and then stimulated with LPS (1 ${\mu}g/m{\ell}$) at indicated times. Cell toxicity of GCF was determined by MTT assay. The levels of NO, PGE2 and cytokines were measured by Griess assay and ELISA. The mRNA and protein expressions of iNOS and cytokines were determined by RT-PCR and Western blotting. Free radical scavenging activity of GCF was determined by DPPH assay in tube test. Results : FF-E significantly inhibited the excessive production of NO, $PGE_2$, $TNF-{\alpha}$, and $IL-1{\beta}$ in LPS-stimulated BV-2 cells. In addition, FF-E attenuated the mRNA and protein expressions of iNOS, and proinflammatory cytokines. FF-E also significantly scavenged the DPPH free radicals in a dose-dependent manner. Conclusions : These results indicate that FF-E exhibits anti-inflammatory property by suppressing the transcription of inflammatory mediator genes, suggesting the anti-inflammatory property of FF-E may make it useful as a therapeutic agent for the treatment of human neurodegenerative diseases.

  • PDF

Anti-inflammatory effects of a methanol extract from Pulsatilla koreana in lipopolysaccharide-exposed rats

  • Lee, Sang-Hyun;Lee, Eun;Ko, Young-Tag
    • BMB Reports
    • /
    • 제45권6호
    • /
    • pp.371-376
    • /
    • 2012
  • To investigate the therapeutic effect of a Korean herbal medicine Pulsatilla koreana as an anti-septic agent, anti-inflammatory effects of the herbal medicine were determined in lipopolysaccharide (LPS)-exposed rats. Treatment with a methanol extract from Pulsatilla koreana significantly inhibited LPS-induced inflammatory responses. Results from ELISA analysis showed that Pulsatilla koreana decreased the plasma and hepatic levels of pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$ while increased the level of anti-inflammatory cytokine IL-10 in LPS-exposed rats. Pulsatilla koreana also decreased the plasma levels of other inflammatory mediators such as $NO_3{^-}/NO_2{^-}$, ICAM-1, $PGE_2$, and CINC-1 in LPS-exposed rats. Although no significant effects were observed in the phagocytic activities, the distribution of lymphocyte population was significantly shifted by the treatment with Pulsatilla koreana. All together, Pulsatilla koreana exerts anti-inflammatory activities in the immune-challenged animals implicating that this Korean herbal medicine is therapeutically useful for the treatment of inflammatory diseases like sepsis.

NF-κB와 MAPK 억제를 통한 스테비아 잎의 항염증효과 (Anti-inflammatory Effect of Stevia Rebaudiana as a Results of NF-κB and MAPK Inhibition)

  • 김선영;조미정;황보민;백영두;정태영;조일제;지선영
    • 한방안이비인후피부과학회지
    • /
    • 제26권3호
    • /
    • pp.54-64
    • /
    • 2013
  • Objectives : Stevia rebaudiana is a well-known herbal sweetener in the Korea, Japan and China, and its medical uses were originated from countries in South America. Although it has been shown the various medical effects of S. rebaudiana including contraception and treatment of human diseases such as hyperglycemia, it has almost not been studied about the efficacy of S. rebaudiana methanolic extract (SRE) on the acute inflammation and its action mechanism. Methods : To investigate the anti-inflammatory effects of SRE, we treated SRE and examined the level of inflammatory mediators in LPS-stimulated Raw264.7 cells. Results : Treatment of macrophage with LPS markedly induced the production of NO, $PGE_2$ and pro-inflammatory cytokines. Pretreatment of SRE blocked the induction of inflammatory mediators and the expression of iNOS protein. More importantly, LPS-induced phosphorylation of $I{\kappa}B-{\alpha}$ was suppressed by the treatment of SRE, suggesting SRE inhibition of NF-${\kappa}B$ activation. Furthermore, SRE blocked LPS-induced phosphorylation of MAPKs. Conclusions : SRE inhibited the induction of NO, PGE2 and pro-inflammatory cytokines in Raw264.7 cells. SRE's effect may be mediated with its inhibition of NF-${\kappa}B$ activation and MAPK phosphorylation, which suggests its uses as an anti-inflammatory agents.

LPS로 유도된 RAW 264.7 대식세포에 대한 애기외톨개 모자반(Myagropsis yendoi) 에틸아세테이트 분획물의 항염증 효과 (Anti-inflammatory Effect of an Ethyl Acetate Fraction from Myagropsis yendoi on Lipopolysaccharides-stimulated RAW 264.7 Cells)

  • 김보운;김재일;김형락;변대석
    • 한국수산과학회지
    • /
    • 제47권5호
    • /
    • pp.527-536
    • /
    • 2014
  • An ethanolic extract from Myagropsis yendoi was fractionated using several solvents. Among these, an ethyl acetate fraction (Myagropsis yendoi ethyl acetate fraction: MYE) showed the highest anti-inflammatory activity based on inhibition of lipopolysaccharides (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells. We thus investigated the molecular mechanisms underlying MYE's inhibitory effects. Pretreatment of cells with up to $30{\mu}g/mL$ of MYE significantly inhibited NO production and inducible nitric oxide synthase expression in a dose-dependent manner (P<0.05). Similarly, MYE markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$, as well as their mRNA levels. While the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) was strongly suppressed by MYE, the activation of a nuclear factor erythroid 2-related factor (Nrf2) was increased. Moreover, MYE significantly reduced the phosphorylation of JNK, p38 MAPK, and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. These results indicate that MYE contains anti-inflammatory compounds, and that it might be used as a dietary supplement for the prevention of inflammatory diseases.

Anti-inflammatory Effect of Broccoli Leaf Hexane Fraction in LPS-stimulated RAW264.7 Cells

  • Kim, Mee-Kyung
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권1호
    • /
    • pp.175-181
    • /
    • 2022
  • 본 연구에서는 브로콜리 잎 헥산 분획물의 항염 효과를 평가하여 기능성 식품 및 화장품 소재로의 적용 가능성을 확인하였다. LPS-자극된 RAW264.7 세포에서 전염증성 사이토카인의 생성, iNOS와 COX-2의 발현, MAPK (ERK, JNK, p38) 및 브로콜리 잎 헥산 분획을 사용한 NF-κB의 인산화를 분석하였다. 브로콜리 잎 헥산 분획은 TNF-α, IL-4, IL-6, IL-1β 등의 전염증성 사이토카인의 분비와 iNOS와 COX-2의 발현을 억제했습니다. 또한, 브로콜리 잎 헥산 분획물은 MAPK와 NFκB의 인산화를 감소시켰다. 따라서 브로콜리 잎 헥산 분획물은 식품 및 화장품에서 천연 항염증 소재로 적용 가능성이 있는 것으로 판단된다. 향후 항염증 기전 및 주요 생리활성 물질의 규명에 대한 연구가 필요할 것으로 생각된다.

LPS로 유도된 RAW 264.7 대식세포에서 청대의 항염증효과 (Anti-Inflammatory Effect of Chung-Dae in LPS-Treated RAW 264.7 Cells)

  • 장수주;강순아
    • 한국식품영양학회지
    • /
    • 제35권2호
    • /
    • pp.116-126
    • /
    • 2022
  • The purpose of this study was to analyze the anti-inflammatory effect of Chung-Dae Indigo Pulverata Levis, indigo naturalis) produced during indigo dyeing. As a result of in vitro cytotoxicity experiments using RAW 264.7 cell, Chung-Dae extract did not inhibit cell proliferation in Raw 264.7 cells in the range of 1~32 ㎍/mL. NO production was significantly reduced when Chung-Dae extracts were treated at concentrations of 2, 8, and 32 ㎍/mL (p<0.05). The pro-inflammatory cytokines TNF-α, IL-6, IL-1β and IFN-γ significantly decreased when the Chung-Dae extract was treated at concentrations of 2, 8, and 32 ㎍/mL compared to the LPS group, and similarly, the TNFα and IL-6 mRNA levels also decreased. Additionally, the mRNA level of COX-2 was also suppressed. At the protein expression level, the expression of TNF-α, IL-6, iNOS and COX-2 were observed with LPS and Chung-Dae extract significantly decreased compared to the group treated with only LPS (p<0.05). From the above results, it shows that Chung-Dae extract, a plant-derived compound, inhibits the inflammatory response induced by LPS in RAW 264.7 cells. and in particular, regulates the inflammatory response by inhibiting the expression of pro-inflammatory cytokines and inflammation-related enzymes.