• Title/Summary/Keyword: Pro-, Anti-inflammation

Search Result 583, Processing Time 0.021 seconds

Antioxidant and Anti-inflammatory Activities of Water-soluble Extracts from Different Parts of Kojongsi Persimmon (Diospyros kaki L.) (고종시 감나무 부위별 수용성 추출물의 항산화 및 항염 활성)

  • Jeon, In Hwa;Kang, Hyun Ju;Lee, Hyun-Seo;Shin, Jun Ho;Park, Yong Gyoun;Jeong, Seung-Il;Jang, Seon Il
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.505-510
    • /
    • 2014
  • Kojongsi persimmon (Diospyros kaki L.) is the major cultivar of dried persimmon in Korea. The purpose of this study was to investigate the antioxidant and anti-inflammatory activities of water-soluble extracts from the calyx (PCE), peel (PPE) and leaf (PLE) of Kojongsi persimmon. PCE showed the highest total phenolic and flavonoid contents. In addition, the antioxidant activities (diphenylpicrylhydrazyl, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), nitric oxide and reducing power) of PCE were higher than those of PPE and PLE. Moreover, PCE, PPE and PLE significantly suppressed the production of inflammatory mediators (nitric oxide and $prostaglandinE_2$) and pro-inflammatory cytokines (tumor necrosis factor-${\alpha}$ and interluekin-$1{\beta}$) by lipopolysaccharide-stimulated RAW 264.7 cells in a dose-dependent manner. PCE showed the highest anti-inflammatory activity. Thus, these results suggest that the calyx of Kojongsi persimmon may be highly valuable as a natural product owing to its high-quality functional components as well as its-antioxidant, ant-iinflammatory activities.

Hesperetin Ameliorates Inflammatory Responses in Lipopolysaccharide-stimulated RAW 264.7 Cells via p38 MAPK and ERK1/2 (마우스 대식세포 RAW 264.7 세포주에서 hesperetin에 의한 p38 MAPK와 ERK1/2를 통한 염증반응 조절)

  • Lee, Seung-Hoon;Lee, Eun-Joo;Chung, Chungwook;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.129-134
    • /
    • 2019
  • In a previous study, we isolated 11 different kinds of compounds from ethyl acetate fractions of lees (jubak) which is a by-product of Korean traditional wine production. These compounds were identified as caffeic acid, coumaric acid, D-mannitol, ferulic acid, hesperetin, hesperidin, naringenin, naringin, sinapic acid, syringic acid, and vanilic acid. To evaluate their anti-inflammatory activities in an in vitro model, nitric oxide (NO) production was measured in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells after the treatment of these cells with each compound. Among the various chemicals, hesperetin and naringenin showed the highest inhibition of NO production in the LPS-activated RAW 264.7 cells. Hesperetin was chosen for further study because of its strong anti-inflammatory activity and because the mechanisms underlying its anti-inflammatory properties still remain unclear. Our results showed that hesperetin dramatically inhibited NO production in a dose-dependent manner as compared with in an LPS-only treated group, without affecting cell viability. In addition, hesperetin reduced the protein expression of the pro-inflammatory gene inducible nitric oxide synthase (iNOS) in a dose-dependent manner, whereas it did not affect cyclooxygenase-2 (COX-2) expression. Furthermore, hesperetin inhibited phosphorylation of p38 mitogen- activated protein kinase (MAPK) and extracellular signal regulated kinase (ERK) 1/2, whereas it did not affect phosphorylation of c-jun N- terminal kinase (JNK). The results indicated that hesperetin regulated the LPS-induced inflammatory response by suppressing p38 MAPK and ERK1/2 signaling. Overall, our results may help to understand the mechanisms underlying the anti-inflammatory activity mediated by hesperetin.

Anti-inflammatory Effect of Nypa fruticans Wurmb. on tumor necrosis factor (TNF)-α-induced Inflammatory response in HaCaT cells (TNF-α로 유도된 HaCaT 각질형성세포의 염증반응에서 해죽순의 항염증 효과)

  • Bae, Gi-Sang;Park, Sung-Joo
    • The Korea Journal of Herbology
    • /
    • v.34 no.1
    • /
    • pp.51-57
    • /
    • 2019
  • Objectives : Nypa fruticans Wurmb. (NF) have been used as a traditional medicine to treat inflammatory diseases in East-South Asia. However, it is largely undiscovered whether NF water extract could exhibit anti-inflammatory activities against tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced inflammatory responses on human keratinocytes, HaCaT cells. Therefore, this study was aimed to investigate the anti-inflammatory activity of NF water extract on TNF-${\alpha}$-induced inflammatory responses in HaCaT cells. Methods : To investigate the anti-inflammatory activites of NF water extract in HaCaT cells, the inflammatory model of HaCaT cells was established under a suitable concentration (10 ng/ml) of human TNF-${\alpha}$ (hTNF-${\alpha}$). HaCaT keratinocyte cells were pre-treated with NF water extract for 1 h, and then stimulated with hTNF-${\alpha}$. Then, the cells were harvested to measure the inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and prostaglandin $E_2$ ($PGE_2$), and pro-inflammatory cytokine including TNF-${\alpha}$ and interleukin (IL)-6. In addition, we examined the inhibitory mechanisms of NF, mitogen activated protein kinases (MAPKs) and inhibitory kappa B alpha ($I{\kappa}-B{\alpha}$) Results : The treatment of NF inhibited the hTNF-${\alpha}$-induced elevation of iNOS, COX-2, and $PGE_2$ in HaCaT cells. In addition, NF treatment inhibited the hTNF-${\alpha}$-induced elevation of TNF-${\alpha}$ and IL-6. Furthermore, NF treatment inhibited the activation of MAPKs but not degradation of $I{\kappa}-B{\alpha}$. Conclusions : Taken together, our result suggest that treatment of NF could inhibit the hTNF-${\alpha}$-induced inflammatory responses via deactivation of MAPKs in HaCaT cells. This study could suggest that NF could be a beneficial agent to prevent skin damage or inflammation.

Recombinant human KAI1/CD82 attenuates M1 macrophage polarization on LPS-stimulated RAW264.7 cells via blocking TLR4/JNK/NF-κB signal pathway

  • Hyesook Lee;Jung-Hwa Han;Kangbin An;Yun Jeong Kang;Hyun Hwangbo;Ji Hye Heo;Byung Hyun Choi;Jae-Joon Kim;Seo Rin Kim;Soo Yong Lee;Jin Hur
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.359-364
    • /
    • 2023
  • KAI1/CD82, a membrane tetraspanin protein, can prevent various cancers and retinal disorders through its anti-angiogenic and anti-metastatic capacity. However, little is known about its anti-inflammatory effect and molecular mechanism. Therefore, the present study aimed to inLPSvestigate effect of a recombinant protein of the large extracellular domain of human KAI1 (Gly 111-Leu 228, rhKAI1) on lipopolysaccharides (LPS)-stimulated RAW264.7 macrophage-like cells and mouse bone marrow-derived macrophages (BMDM) and to identify its underlying mechanism. Our data showed that rhKAI1 suppressed expression levels of classically macrophages (M1) phenotype-related surface markers F4/80+CD86+ in LPS-stimulated BMDM and RAW264.7 cells. In addition, LPS markedly increased mRNA expression and release levels of pro-inflammatory cytokines and mediators such as interleukin (IL)-1β, IL-6, tumor necrosis factor-α, cyclooxygenase-2, nitric oxide and prostaglandin E2, whereas these increases were substantially down-regulated by rhKAI1. Furthermore, LPS strongly increased expression of NF-κB p65 in the nuclei and phosphorylation of ERK, JNK, and p38 MAPK. However, nuclear translocation of NF-κB p65 and phosphorylation of JNK were greatly reversed in the presence of rhKAI1. Especially, rhKAI1 markedly suppressed expression of toll-like receptor (TLR4) and prevented binding of LPS with TLR4 through molecular docking predict analysis. Importantly, Glu 214 of rhKAI1 residue strongly interacted with Lys 360 of TLR4 residue, with a binding distance of 2.9 Å. Taken together, these findings suggest that rhKAI1 has an anti-inflammatory effect on LPS-polarized macrophages by interacting with TLR4 and down-regulating the JNK/NF-κB signaling pathway.

Anti-inflammatory effects of Lycoris chejuensis callus using biorenovation (Biorenovation 기법 적용 제주상사화 callus의 항염증 활성)

  • Hyehyun Hong;Tae-Jin Park;Yu-Jung Lee;Jung-Hwan Kim;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.197-203
    • /
    • 2023
  • Callus cultivation is a method for producing a large amount of tissue of a plant in the laboratory, regardless of the environment. Lycoris chejuensis, a plant species native to jeju island, is a member of the Lycoris family has been used as a traditional medicine for the treatment of diverse diseases. In this study, we evaluated anti-inflammatory effect of biorenovated Lycoris chejuensis callus (LCB) in lipopolysaccharide (LPS)-induced RAW264.7 cells. As a result, LCB was less toxic to the cells in the concentration range of 25, 50, and 100 ㎍/mL as shown by the improved viability of LCB treated cells than compared to Lycoris chejuensis callus (LC) treatment. In addition, LCB inhibited the generation of NO and prostaglandin E2 through the suppression of inducible nitric oxide synthase and cyclooxygenase-2 protein expression. LCB also attenuated the expression of interleukin-1β, interleukin-6 and tumor necrosis factor-α induced by LPS. The results suggest that LCB has anti-inflammatory activity on the LPS-induced inflammatory response and may be suitable for the development of potent functional cosmetic material.

L-AHG-mediated Suppression of M1 Polarization and Pro-inflammatory Signaling Pathways in LPS-stimulated RAW264.7 Macrophages (LPS에 의해 자극된 RAW264.7 대식세포에서 L-AHG에 의한 M1 분극화 및 친염증 신호 경로의 억제)

  • Won Young Jang;Shin Young Park;Ki Youn Kim;Do Youn Jun;Young-Seuk Bae;Young Ho Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • This study aimed to examine the influence of 3,6-anhydroxygalactose (L-AHG) on the pro-inflammatory M1 polarization and pro-inflammatory responses observed in the RAW264.7 mouse macrophage cell line following stimulation with lipopolysaccharides (LPS). L-AHG exhibited a significant and dose-dependent inhibition of inducible nitric oxide synthase (iNOS) expression, a hallmark of M1 polarization, and subsequent NO production in LPS-stimulated RAW264.7 cells. Furthermore, the LPS-induced upregulation of cyclooxygenase-2 (COX-2), which drives the production of prostaglandin E2, an inflammatory mediator, was also inhibited by L-AHG. L-AHG did not affect the LPS-triggered Toll-like receptor 4 (TLR4)-mediated pro-inflammatory signaling pathway, which culminated in the activation of transforming growth factor-β-activated kinase 1 (TAK1). However, it was observed to inhibit the generation of reactive oxugen species (ROS) in a dose-dependent manner, as well as the TAK1-driven activation of JNK and p38 MAPK. Given that the active p38 MAPK is known to contribute to the assembly of active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the intracellular generation of pro-inflammatory ROS in LPS-stimulated macrophages, the dose-dependent reduction in the LPS-induced ROS generation by L-AHG may be mainly due to the prevention of TAK1-driven activation of p38 MAPK. Together, these results demonstrate that the L-AHG-mediated inhibition of the TAK1-JNK/p38 MAPK activation phase of the pro-inflammatory signaling pathway in LPS-stimulated RAW264.7 cells by L-AHG represents a promising mechanism for suppressing M1 polarization and pro-inflammatory responses in macrophages.

Comparison of Anti-inflammatory Activities among Ethanol Extracts of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus, and their Mixtures in RAW 246.7 Murine Macrophages (RAW 246.7 대식세포 모델에서 고삼, 감초, 백선피 에탄올 추출물 및 추출복합물의 항염증 효능 비교)

  • Han, Min Ho;Lee, Moon Hee;Hong, Su Hyun;Choi, Yung Hyun;Moon, Ju Sung;Song, Myung Kyu;Kim, Min Ju;Shin, Su Jin;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.329-335
    • /
    • 2014
  • Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus have been widely used in folk medicine for several inflammatory disorders in Korea and China. In this study, we compared the anti-inflammatory effects of the ethanol extracts of S. flavescens (EESF), G. uralensis (EEGU) and D. dasycarpus (EEDS), and their mixtures (medicinal herber mixtures, MHMIXs) on production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. Our data indicated that treatment with EESF, EEGU and EEDD significantly inhibited the excessive production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) in LPS-stimulated RAW 264.7 cells. The ethanol extracts and MHMIXs also attenuated the production of pro-inflammatory cytokines, including interleukin-$1{\beta}$ ($IL-1{\beta}$) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) by suppressing their protein expression, respectively. Interestingly, MHMIX-1, which basic ingredients are EESF, EEGU and EEDS in the proportion 3:1:1, more safely and effectively inhibits the LPS-induced inflammatory status in LPS-stimulated RAW 264.7 macrophages compared to ethanol extracts of each medicinal herb and other MHMIXs without causing any cytotoxic effects. Our study provides scientific evidence to support that a berbal mixture, MHMIX-1 may be useful in the treatment of inflammatory diseases by inhibiting inflammatory regulator responses in activated macrophages.

Anti-oxidative and Anti-inflammatory Activities of Fermented Turmeric (Curcuma longa L.) by Rhizopus oryzae (Rhizopus oryzae으로 발효한 울금의 항산화 및 항염효과)

  • Kim, Eun-Ju;Song, Bit-Na;Jeong, Da-Som;Kim, So-Young;Cho, Yong-Sik;Park, Shin-Young
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1315-1323
    • /
    • 2017
  • Turmeric is a rhizomatous herbaceous perennial plant (Curcuma longa (CL)) of the ginger family, Zingiberaceae. A yellow-pigmented fraction isolated from the rhizomes of CL contains curcuminoids belonging to the dicinnamoyl methane group. Curcumin is an important active ingredient responsible for the biological activity of CL. However, CL is not usually used as a food source due to its bitter taste. The present study was designed to determine the effect of the CL fermented by Rhizopus oryzae (FCL) on pro-inflammatory factors such as nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), tumor necrosis factor alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 cell line. The cell viability was determined by MTT assay. To evaluate the anti-inflammatory effect of FCL 80% EtOH extracts, IL-6 and $TNF-{\alpha}$ were measured by ELISA kit. Also, the amount of $NO/PGE_2/NF-{\kappa}B$ was measured using the $NO/PGE_2/NF-{\kappa}B$ detection kit and the iNOS/COX-2 expression was measured by Western blotting. The results showed that the FCL reduced NO, $PGE_2$, iNOS, COX-2, $NF-{\kappa}B$, IL-6 and $TNF-{\alpha}$ production without cytotoxicity. These results suggest that FCL extracts may be a developed the functional food related to anti-inflammation due to the significant effects on inflammatory factors.

The Role of ROS-NF-κB Signaling Pathway in Enhancement of Inflammatory Response by Particulate Matter 2.5 in Lipopolysaccharide-stimulated RAW 264.7 Macrophages (RAW 264.7 대식세포에서 지질 다당류에 의한 미세먼지(PM2.5) 유발 염증 반응 증진에 미치는 ROS-NF-κB 신호 전달 경로의 역할)

  • Kwon, Da Hye;Kim, Da Hye;Kim, Min Yeong;Hwangbo, Hyun;Ji, Seon Yeong;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Nam, Soo-Wan;Hwang, Hye-Jin;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1110-1119
    • /
    • 2021
  • The purpose of this study was to investigate whether the inflammatory response in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages could be promoted by particulate matter 2.5 (PM2.5) stimulation. To this end, the levels of inflammatory parameters, reactive oxygen species (ROS) and inflammation-regulating genes were investigated in RAW 264.7 cells treated with PM2.5 in the presence or absence of LPS. Our results showed that the production levels of pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (interleukin-6 and -1β) were significantly increased by PM2.5 stimulation in LPS-treated RAW 264.7 cells, which was correlated with increased expression genes involved in their production. In addition, when LPS-treated RAW 264.7 cells were exposed to PM2.5, nuclear factor-kappaB (NF-κB) expression was further increased in the nucleus, and the expression of inhibitor of NF-κB as well as NF-κB in the cytoplasm was decreased. These results suggest that the co-treatment of PM2.5 and LPS further increases the activation of the NF-κB signaling pathway compared to each treatment alone, thereby contributing to the promotion of transcriptional activity of inflammatory genes. Furthermore, although the generation of ROS was greatly increased by PM2.5 in LPS-treated RAW 264.7 cells, the NF-κB inhibitor did not reduce the generation of ROS. In addition, when the generation of ROS was artificially suppressed, the production of inflammatory mediators and the activation of NF-κB were both abolished. Therefore, our results suggest that the increase in the NF-κB-mediated inflammatory response induced by PM2.5 in LPS-treated RAW 264.7 macrophages was a ROS generation-dependent phenomenon.

Inhibitory Effects of Spinach, Cabbage, and Onion Extracts on Growth of Cancer Cells (시금치, 양배추, 양파 추출물의 암세포 증식 억제 효과)

  • Lee, Hae-Nim;Shin, Seong-Ah;Choo, Gang-Sik;Kim, Hyeong-Jin;Park, Young-Seok;Kim, Sang-Ki;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.671-679
    • /
    • 2016
  • Extracts from spinach, cabbage, and onion are known to possess various instructive characteristics, including antioxidant and anti-inflammation activities. Spinach, cabbage, and onion are consumed worldwide and represent important sources of dietary phytochemicals with proven antioxidant properties, such as flavonoids and phenolic acids. Food-derived flavonoids and phenolic compounds are expected to be promising drugs for cancer. In the present study, we investigated the effects of methanol extracts of spinach, cabbage, and onion on cell proliferation and apoptosis in human gastric and breast cancer cells. Proliferation rates of AGS, MDA-MB-231, and SK-BR-3 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The methanol extracts of spinach, cabbage, and onion inhibited proliferation of cancer cells in a dose-dependent manner. 4',6-Diamidino-2-phenylindole (DAPI) staining revealed that chromatin condensation significantly increased compared with the control. In the results of MTT assay and DAPI staining, onion extract was the most effective in inhibiting cancer cell proliferation and apoptosis. To assess changes in protein expression level by onion extract, we identified Bax (pro-apoptotic), Bcl-2 (anti-apoptotic), and poly(ADP-ribose) polymerase (PARP) protein by western blot analysis. The expression of Bax and cleaved-PARP increased, whereas expression of Bcl-2 was decreased compared with the control. These results suggest that spinach, cabbage, and onion extracts suppressed growth of human gastric cancer AGS, human breast cancer MDA-MB-231, and SK-BR-3 cells through induction of apoptosis. Among the extracts, onion extract had stronger anti-cancer and apoptosis induction effects than spinach and cabbage extracts. Further, onion extract more effectively induced apoptosis of human gastric cancer cells than human breast cancer cells. Therefore, further studies are needed to determine the anti-cancer effects of onion extracts in vivo. Onion extract can be developed as a chemopreventive or therapeutic agent for gastric cancer.