KSII Transactions on Internet and Information Systems (TIIS)
/
제18권5호
/
pp.1341-1368
/
2024
The concept of privacy-preserving collaborative filtering (PPCF) has been gaining significant attention. Due to the fact that model-based recommendation methods with privacy are more efficient online, privacy-preserving memory-based scheme should be avoided in favor of model-based recommendation methods with privacy. Several studies in the current literature have examined ant colony clustering algorithms that are based on non-privacy collaborative filtering schemes. Nevertheless, the literature does not contain any studies that consider privacy in the context of ant colony clustering-based CF schema. This study employed the ant colony clustering model-based PPCF scheme. Attacks like shilling or profile injection could potentially be successful against privacy-preserving model-based collaborative filtering techniques. Afterwards, the scheme's robustness was assessed by conducting a shilling attack using six different attack models. We utilize masked data-based profile injection attacks against a privacy-preserving ant colony clustering-based prediction algorithm. Subsequently, we conduct extensive experiments utilizing authentic data to assess its robustness against profile injection attacks. In addition, we evaluate the resilience of the ant colony clustering model-based PPCF against shilling attacks by comparing it to established PPCF memory and model-based prediction techniques. The empirical findings indicate that push attack models exerted a substantial influence on the predictions, whereas nuke attack models demonstrated limited efficacy.
기술의 발전에 따라 유전 정보를 수월하게 얻을 수 있게 되었으며, 이것의 활용도 및 미래 가치는 매우 높다. 하지만, 유전 정보는 한 번 유출되면 변경할 수 없으며, 피해의 정도도 개인에만 국한되지 않고, 대용량 데이터이기 때문에 이를 고려한 처리 기술 또한 필요하다. 즉, 대용량에서도 프라이버시를 고려하며 유전 정보를 처리할 수 있는 기술의 개발이 필요하다. 본 논문에서는 Gentry 등의 준동형 암호 기법을 사용하여 먼저 대용량에서 프라이버시를 보호하는 내적 연산 프로토콜을 제안하고, 이 프로토콜을 활용하여 효율적인 프라이버시를 보호하는 DNA 매칭 프로토콜을 제안한다. 우리가 제안하는 프라이버시를 보호하는 DNA 매칭 프로토콜은 효율적이며, 정확성, 기밀성, 프라이버시를 만족한다.
Damiani, Maria Luisa;Silvestri, Claudio;Bertino, Elisa
Journal of Computing Science and Engineering
/
제2권2호
/
pp.137-160
/
2008
The increasing availability of personal location data pushed by the widespread use of location-sensing technologies raises concerns with respect to the safeguard of location privacy. To address such concerns location privacy-preserving techniques are being investigated. An important area of application for such techniques is represented by Location Based Services (LBS). Many privacy-preserving techniques designed for LBS are based on the idea of forwarding to the LBS provider obfuscated locations, namely position information at low spatial resolution, in place of actual users' positions. Obfuscation techniques are generally based on the use of geometric methods. In this paper, we argue that such methods can lead to the disclosure of sensitive location information and thus to privacy leaks. We thus propose a novel method which takes into account the semantic context in which users are located. The original contribution of the paper is the introduction of a comprehensive framework consisting of a semantic-aware obfuscation model, a novel algorithm for the generation of obfuscated spaces for which we report results from an experimental evaluation and reference architecture.
International Journal of Computer Science & Network Security
/
제21권11호
/
pp.105-110
/
2021
Contact between Vehicle-to-vehicle and vehicle-to-infrastructural is becoming increasingly popular in recent years due to their crucial role in the field of intelligent transportation. Vehicular Ad-hoc networks (VANETs) security and privacy are of the highest value since a transparent wireless communication tool allows an intruder to intercept, tamper, reply and erase messages in plain text. The security of a VANET based intelligent transport system may therefore be compromised. There is a strong likelihood. Securing and maintaining message exchange in VANETs is currently the focal point of several security testing teams, as it is reflected in the number of authentication schemes. However, these systems have not fulfilled all aspects of security and privacy criteria. This study is an attempt to provide a detailed history of VANETs and their components; different kinds of attacks and all protection and privacy criteria for VANETs. This paper contributed to the existing literature by systematically analyzes and compares existing authentication and confidentiality systems based on all security needs, the cost of information and communication as well as the level of resistance to different types of attacks. This paper may be used as a guide and reference for any new VANET protection and privacy technologies in the design and development.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권5호
/
pp.2768-2780
/
2019
Ciphertext-policy attribute-based encryption (CP-ABE) is one of the practical technologies to share data over cloud since it can protect data confidentiality and support fine-grained access control on the encrypted data. However, most of the previous schemes only focus on data confidentiality without considering data receiver privacy preserving. Recently, Li et al.(in TIIS, 10(7), 2016.7) proposed a CP-ABE with hidden access policy and testing, where they declare their scheme achieves privacy preserving for the encryptor and decryptor, and also has high decryption efficiency. Unfortunately, in this paper, we show that their scheme fails to achieve hidden access policy at first. It means that any adversary can obtain access policy information by a simple decisional Diffie-Hellman test (DDH-test) attack. Then we give a method to overcome this shortcoming. Security and performance analyses show that the proposed scheme not only achieves the privacy protection for users, but also has higher efficiency than the original one.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권11호
/
pp.3182-3203
/
2023
With the growing adoption of cloud-based technologies, maintaining the privacy and security of cloud data has become a pressing issue. Privacy-preserving encryption schemes are a promising approach for achieving cloud data security, but they require careful design and implementation to be effective. The integrated approach to cloud data security that we suggest in this work uses CogniGate: the orchestrated permissions protocol, index trees, blockchain key management, and unique Opacus encryption. Opacus encryption is a novel homomorphic encryption scheme that enables computation on encrypted data, making it a powerful tool for cloud data security. CogniGate Protocol enables more flexibility and control over access to cloud data by allowing for fine-grained limitations on access depending on user parameters. Index trees provide an efficient data structure for storing and retrieving encrypted data, while blockchain key management ensures the secure and decentralized storage of encryption keys. Performance evaluation focuses on key aspects, including computation cost for the data owner, computation cost for data sharers, the average time cost of index construction, query consumption for data providers, and time cost in key generation. The results highlight that the integrated approach safeguards cloud data while preserving privacy, maintaining usability, and demonstrating high performance. In addition, we explore the role of differential privacy in our integrated approach, showing how it can be used to further enhance privacy protection without compromising performance. We also discuss the key management challenges associated with our approach and propose a novel blockchain-based key management system that leverages smart contracts and consensus mechanisms to ensure the secure and decentralized storage of encryption keys.
온라인상에 축적되는 디지털 데이터의 양은 폭발적으로 증가하고 있으며 이러한 데이터들은 매우 큰 잠재적 가치를 갖고 있다. 국가 및 기업들은 방대한 양의 데이터로부터 다양한 부가가치를 창출하고 있으며 데이터 분석 기술에 많은 투자를 하고 있다. 그러나 데이터 분석에서 발생하는 프라이버시 문제는 데이터의 활용을 저해하는 큰 요인으로 작용하고 있다. 최근 신경망 모델 기반의 분석 기술에 대한 프라이버시 침해 공격들이 제안됨에 따라 프라이버시를 보존하는 인공 신경망 기술에 대한 연구가 요구되고 있다. 이에 따라 엄격한 프라이버시를 보장하는 차분 프라이버시 분야에서 다양한 프라이버시 보존형 인공 신경망 기술에 대한 연구가 수행되고 있지만, 신경망 모델의 정확도와 프라이버시 보존 강도 사이의 균형이 적절하지 않은 문제점이 있다. 본 논문에서는 프라이버시와 모델의 성능을 모두 보존하고 모델 전도 공격에 저항성을 갖는 차분 프라이버시 기술을 제안한다. 또한, 프라이버시 보존 강도에 따른 모델전도 공격의 저항성을 분석한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권10호
/
pp.2708-2730
/
2012
The growing concern for the protection of personal information has made it critical to implement effective technologies for privacy and data management. By observing the limitations of existing approaches, we found that there is an urgent need for a flexible, privacy-aware system that is able to meet the privacy preservation needs at both the role levels and the personal levels. We proposed a conceptual system that considered these two requirements: a graph-based, access control model to safeguard patient privacy. We present a case study of the healthcare field in this paper. While our model was tested in the field of healthcare, it is generic and can be adapted to use in other fields. The proof-of-concept demos were also provided with the aim of valuating the efficacy of our system. In the end, based on the hospital scenarios, we present the experimental results to demonstrate the performance of our system, and we also compared those results to existing privacy-aware systems. As a result, we ensured a high quality of medical care service by preserving patient privacy.
4차 산업혁명의 도래와 함께 인공지능, 빅데이터, 사물인터넷, 클라우드 컴퓨팅 등의 첨단 정보 기술이 다양한 산업 분야에서 혁신을 이끌고 있다. 이 기술들은 방대한 양의 데이터를 생성하고 있으며, 많은 기업들이 이를 활용하고 있다. 그러나 개인 데이터 수집 시 발생할 수 있는 프라이버시 침해 위험으로 인해 사용자들은 민감한 정보 제공을 망설이고 있다. 특히 의료 분야에서는 환자의 병명과 같은 민감한 정보 수집이 큰 도전이 되고 있으며, 프라이버시 문제가 데이터 수집과 분석의 장애가 되고 있다. 본 연구는 프라이버시 보호를 유지하면서도 통계적 정보를 효과적으로 추출할 수 있는 의료 데이터 수집 및 분석 기법을 제안한다. 제안 기법은 기존의 단순한 데이터 수집을 넘어서, 프라이버시를 보장하면서 수집된 데이터에서 통계적 정보를 효과적으로 추출하는 방법을 포함한다. 실제 데이터를 이용한 성능 평가에서는 제안된 기법이 기존 방법보다 더 효과적으로 프라이버시를 보존하며 통계적 정보를 도출할 수 있음을 입증한다.
인공지능 기술은 스마트 시티, 자율 주행, 의료 분야 등 다양한 분야에서 활용 가능성을 높이 평가받고 있으나, 정보주체의 개인정보 및 민감정보의 노출 문제로 모델 활용이 제한되고 있다. 이에 따라 데이터를 중앙 서버에 모아서 학습하지 않고, 보유 데이터셋을 바탕으로 일차적으로 학습을 진행한 후 글로벌 모델을 최종적으로 학습하는 분산 기계 학습의 개념이 등장하였다. 그러나, 분산 기계 학습은 여전히 협력하여 학습을 진행하는 과정에서 데이터 프라이버시 위협이 발생한다. 본 연구는 분산 기계 학습 연구 분야에서 프라이버시를 보호하기 위한 연구를 서버의 존재 유무, 학습 데이터셋의 분포 환경, 참여자의 성능 차이 등 현재까지 제안된 분류 기준들을 바탕으로 유기적으로 분석하여 최신 연구 동향을 파악한다. 특히, 대표적인 분산 기계 학습 기법인 수평적 연합학습, 수직적 연합학습, 스웜 학습에 집중하여 활용된 프라이버시 보호 기법을 살펴본 후 향후 진행되어야 할 연구 방향을 모색한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.