KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.12
/
pp.5654-5668
/
2018
Driven by security and real-time demands of Internet of Things (IoT), the timing of fog computing and edge computing have gradually come into place. Gateways bear more nearby computing, storage, analysis and as an intelligent broker of the whole computing lifecycle in between local devices and the remote cloud. In fog computing, the edge broker requires X-aware capabilities that combines software programmability, stream processing, hardware optimization and various connectivity to deal with such as security, data abstraction, network latency, service classification and workload allocation strategy. The prosperous of Field Programmable Gate Array (FPGA) pushes the possibility of gateway capabilities further landed. In this paper, we propose a software-defined gateway (SDG) scheme for fog computing paradigm termed as Fog Computing Zero-Knowledge Gateway that strengthens data protection and resilience merits designed for industrial internet of things or highly privacy concerned hybrid cloud scenarios. It is a proxy for fog nodes and able to integrate with existing commodity gateways. The contribution is that it converts Privacy-Enhancing Technologies rules into provable statements without knowing original sensitive data and guarantees privacy rules applied to the sensitive data before being propagated while preventing potential leakage threats. Some logical functions can be offloaded to any programmable micro-controller embedded to achieve higher computing efficiency.
Hye-Yeon Shim;MinSeo Kweun;DaYoung Yoon;JiYoung Seo;Il-Gu Lee
Journal of the Korea Institute of Information Security & Cryptology
/
v.34
no.2
/
pp.207-216
/
2024
As big data was built due to the 4th Industrial Revolution, personalized services increased rapidly. As a result, the amount of personal information collected from online services has increased, and concerns about users' personal information leakage and privacy infringement have increased. Online service providers provide privacy policies to address concerns about privacy infringement of users, but privacy policies are often misused due to the long and complex problem that it is difficult for users to directly identify risk items. Therefore, there is a need for a method that can automatically check whether the privacy policy is safe. However, the safety verification technique of the conventional blacklist and machine learning-based privacy policy has a problem that is difficult to expand or has low accessibility. In this paper, to solve the problem, we propose a safety verification technique for the privacy policy using the GPT-3.5 API, which is a generative artificial intelligence. Classification work can be performed evenin a new environment, and it shows the possibility that the general public without expertise can easily inspect the privacy policy. In the experiment, how accurately the blacklist-based privacy policy and the GPT-based privacy policy classify safe and unsafe sentences and the time spent on classification was measured. According to the experimental results, the proposed technique showed 10.34% higher accuracy on average than the conventional blacklist-based sentence safety verification technique.
Journal of the Korea Institute of Information Security & Cryptology
/
v.16
no.3
/
pp.39-52
/
2006
Recently purpose is used by an crucial part to security management when collecting data about privacy. The W3C(World Wide Web Consortium) describes a standard spec to control personal data that is provided by data providers who visit the web site. But they don't say anymore about security management about personal data in transit after data collection. Recently several researches, such as Hippocratic Databases, Purpose Based Access Control and Hippocratic in Databases, are dealing with security management using purpose concept and access control mechanism after data collection a W3C's standard spec about data collection mechanism but they couldn't suggest an efficient mechanism for privacy protection about personal data because they couldn't represent purpose expression and management of purposes sufficiently. In this paper we suggest a mechanism to improve the purpose expression. And then we suggest an accesscontrol mechanism that is under least privilege principle using the purpose classification for privacy protection. We classify purpose into Along purpose structure, Inheritance purpose structure and Stream purpose structure. We suggest different mechanisms to deal with then We use the role hierarchy structure of RBAC(Role-Based Access Control) for flexibility about access control and suggest mechanisms that provide the least privilege for processing the task in case that is satisfying using several features of purpose to get least privilege of a task that is a nit of business process.
Journal of the Korea Institute of Information Security & Cryptology
/
v.19
no.6
/
pp.121-134
/
2009
Consumer-centric marketing business is surely one of the most successful emerging business but it poses a threat to personal privacy. Between the service provider and the user there are many contrary issues to each other. The enterprise asserts that to abuse the privacy data which is anonymous there is not a problem. The individual only will not be able to willingly submit the problem which is latent. Web traffic analysis technology itself doesn't create issues, but this technology when used on data of personal nature might cause concerns. The most criticized ethical issue involving web traffic analysis is the invasion of privacy. So we need to inspect how many and what kind of personal informations being used and if there is any illegal treatment of personal information. In this paper, we inspect the operation of consumer-centric marketing tools such as web log analysis solutions and data gathering services with web browser toolbar. Also we inspect Microsoft explorer-based toolbar application which records and analyzes personal web browsing pattern through reverse engineering technology. Finally, this identified and explored security and privacy requirement issues to develop more reliable solutions. This study is very important for the balanced development with personal privacy protection and web traffic analysis industry.
The present study explored the applicability of Visibility Graph Analysis (VGA) techniques to workplace design research. Six types of VGA measures in Depthmap encompassing visual connectivity, three types of visual integration, mean depth, and visual entropy were employed for the analysis of individual privacy for task concentration and group relationship behavior in the open-plan office environment. Data comprised 136 workers in 6 open-plan offices filled with low-paneled (1.2-1.5m) cubicle workspaces. For the statistical analysis, Spearman's rho correlations and t-tests were applied for the spatial and behavioral measures. The results showed that workspace VGA measures have a potential to be useful information to account for workers' concentration privacy and, limitedly, also informal relationships with team members. Visual entropy values especially offer reliable information to predict various aspects of office workers' privacy behavior while visual integration can be used to account for the workers' sense of trust in group relations. The study also discussed the limitation of VGA applications to the workplace context.
The Journal of the Convergence on Culture Technology
/
v.6
no.1
/
pp.441-448
/
2020
With help of Vehicle-to-Grid(V2G) technology battery in electric vehicle can be used as distributed energy resource and energy storage in a smart grid environment. Several problems of security vulnerability and privacy preservation can be occurred because V2G network supports 2 way communication among all components. This paper explains and makes analysis of architecture, privacy sensitive data, security vulnerability and security requirement of V2G system. Furthermore efficient architecture and operating scheme for V2G system are proposed. This scheme uses symmetric cryptosystem and hash algorithm to support privacy preservation and mutual authentication.
We propose a test of consistency for two differentially private histograms using parametric bootstrap. The test can be applied when the original raw histograms are not available but only the differentially private histograms and the privacy level α are available. We also extend the test for the case where the privacy levels are different for different histograms. The resident population data of Korea and U.S in year 2020 are used to demonstrate the efficacy of the proposed test procedure. The proposed test controls the type I error rate at the nominal level and has a high power, while a conventional test procedure fails. While the differential privacy framework formally controls the risk of privacy leakage, the utility of such framework is questionable. This work also suggests that the power of a carefully designed test may be a viable measure of utility.
Journal of the Korea Institute of Information and Communication Engineering
/
v.16
no.8
/
pp.1701-1710
/
2012
Recently, it has been found that it is important to use a smart grid to reduce greenhouse-gas emissions worldwide. A smart grid is a digitally enabled electrical grid that gathers, distributes, and acts on information regarding the behavior of all participants (suppliers and consumers) to improve the efficiency, importance, reliability, economics, and sustainability of electricity services. The smart grid technology uses two-way communication, where users can monitor and limit the electricity consumption of their home appliances in real time. Likewise, power companies can monitor and limit the electricity consumption of home appliances for stabilization of the electricity supply. However, if information regarding the measured electricity consumption of a user is leaked, serious privacy issues may arise, as such information may be used as a source of data mining of the electricity consumption patterns or life cycles of home residents. In this paper, we propose a data transaction protocol for privacy protection in a smart grid. In addition, a power company cannot decrypt an encrypted home appliance ID without the user's password.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.4
/
pp.826-842
/
2024
As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.
Journal of the Korea Institute of Information Security & Cryptology
/
v.18
no.6A
/
pp.139-149
/
2008
The amount of personal information collected by organizations and government agencies is continuously increasing. When a data collector publishes personal information for research and other purposes, individuals' sensitive information should not be revealed. On the other hand, published data is also required to provide accurate statistical information for analysis. k-Anonymity and ${\iota}$-diversity models are popular approaches for privacy preserving data publication. However, they are limited to static data release. After a dataset is updated with insertions and deletions, a data collector cannot safely release up-to-date information. Recently, the m-invariance model has been proposed to support re-publication of dynamic datasets. However, the m-invariant generalization can cause high information loss. In addition, if the adversary already obtained sensitive values of some individuals before accessing released information, the m-invariance leads to severe privacy disclosure. In this paper, we propose a novel technique for safely releasing dynamic datasets. The proposed technique offers a simple and effective method for handling inserted and deleted records without generalization. It also gives equivalent degree of privacy preservation to the m-invariance model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.