• Title/Summary/Keyword: Priority Control

Search Result 933, Processing Time 0.027 seconds

Performance analysis of priority control mechanism with cell transfer ratio and discard threshold in ATM switch (ATM 스위치에서 폐기 임계치를 가진 셀전송비율 제어형 우선순위 제어방식의 성능 분석)

  • 박원기;김영선;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.629-642
    • /
    • 1996
  • ATM switch handles the traffic for a wide range of appliations with different QOS(Quality-of-Service) requirements. In ATM switch, the priority control mechanism is needed to improve effectively the required QOS requirements. In this paper, we propose a priority control mechanism using the cell transfer ratio type and discard threshold in order to archive the cell loss probability requirement and the delay requirement of each service class. The service classes of our concern are the service class with high time priority(class 1) and the service class with high loss priority control mechanism, cells for two kind of service classes are stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the stored and processed within one buffer. In case cells are stored in the buffer, cells for class 2 are allocated in the shole range of the buffer and cells for class 1 are allocated up to discard threshold of the buffer. In case cells in the buffer are transmitted, one cell for class 1 is transmitted whenever the maximum K cells for class 2 are transmitted consecutively. We analyze the time delay and the loss probability for each class of traffic using Markov chain. The results show that the characteristics of the mean cell delay about cells for class 1 becomes better and that of the cell loss probability about cells for class 2 becomes better by selecting properly discard threshold of the buffer and the cell transfer ratio according to the condition of input traffic.

  • PDF

Establishment of Bus Priority Signal in Real-Time Traffic Signal Control (실시간신호제어시스템에서의 버스우선신호 알고리즘 정립 (중앙버스 전용차로를 대상으로))

  • Han, Myeong-Ju;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.101-114
    • /
    • 2006
  • Recently due to the increase of cars and city life, the traffic congestion has worsened. It Is particularly worse in the center of the metropolis. Within the general public means, the public transport buses have the advantage of being more cheap, accessible and mobile. But as there is no separate lane for buses, the collision of cars and buses are creating damage to public service. In order to solve this situation, the bus priority signal system has been introduced to reduce the bus travel time and improve its services. The purpose of this study is to establish bus priority signal algorithm which builds bus efficiency under the real-time traffic signal control system and to analyze the effect of it. As the green time was calculated against real time (under the real-time traffic signal control system), compared to existing bus priority signal there was a reduction in cross street loss. The modified cycle was used to maintain signal progression. A case study was carried out using VISSIM simulation model. In result of this study, we found that there was a decrease in bus travel time despite some evidence of car delays and compared to existing bus priority signal the delay of dishonor could be reduced dramatically. The analysed result of person delay using MOE, is that there is evidence that when bus priority signal is in effect, the person delay is reduced.

Emergency Degree and Usage Frequency Analysis of Vehicle IP Composition Factors to Provide Safety Driving Environment (안전운전 환경 제공을 위한 자동차 IP 구성요소의 긴급도와 사용빈도 분석 -소비자 설문을 바탕으로-)

  • Paik, Seung-Youl;Park, Peom
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.193-197
    • /
    • 1999
  • By the report of KISCO, the 54.20% of total disaster and the 20.87% of death disaster was caused by unsafe position-control. However, it is possible to decrease this kind of disaster rate by designing the control device in the consideration of safety. One of the most popular control device is vehicle instrument panel. Therefore, not only basic function but safe control under the driving environments should be considered when the vehicle instrument panel is designed. For safe control at the driving time, it is especially important to determine the priority of each part using emergency degree and usage frequency, and to set them with this priority for easy control position. In this paper, developing method to determine the priority of each part by pair-wise comparison for emergency degree and usage frequency was suggested and generated the mutual order weights to give them orders. To apply this method to the parts of instrument panel such as function button, audio, air conditioner, and other several detail parts, the direct questionnaire was implemented to drivers about the emergency degree and usage frequency of each part.

  • PDF

Comparative Study on Jitter Control Methods for Improving Real-Time Control Performance (실시간 제어 성능 향상을 위한 지터 제어 기법의 비교 연구)

  • Park, Moon-Ju;Lim, Yang-Mi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • This paper compares and studies scheduling methods to reduce jitter in real-time control systems. While previous research has focused on dynamic-priority scheduling schemes, this paper focuses on fixed-priority scheduling which is more widely used. It is pointed out that previously defined jitter measures might not be useful in enhancing the control performance of a real-time task because the measures are relative values. We present a new jitter measure and a new scheduling scheme for fixed-priority tasks. The experimental results through simulation show that the new scheduling scheme reduces jitter and enhances control performance.

A Fusion Priority Signal Control Algorithm for Emergency Vehicles (긴급차량 융합형 우선신호 제어 알고리즘 개발)

  • Lee, Soong-bong;Lee, Jin-soo;Jang, Jae-min;Lee, Young-Ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.113-127
    • /
    • 2018
  • This study develops a fusion priority signal control algorithm to pass without delay in emergency events. Fusion priority signal control is method combined center control with local control. The center control method applies signal times for each signalized intersection on the emergency vehicle's route when an emergency call is received. As signals are controlled before the emergency vehicle leaves for its destination, it is possible to clear the queues at each intersection more effectively. However, since the traffic information (speed, position) of the real-time emergency vehicle is not used, the intersection arrival time predicted by center control and actual arrival time of the emergency vehicle may be different from each other. In the case, it is possible to experience a delay caused by the signal. Local control method operate priority signal use the real-time information of EV, but there is a limitation that queue elimination time can not be reflected. In this study, fusion(center+local) control algorithm is proposed to compensate the disadvantages of center and local control also maximizing its advantages. Proposed algorithm is expected to decrease delay time of EV in emergency situation.

Delay and Channel Utilization Analysis of IEEE 802.12 VG-AnyLAN Medium Access Control under the Homogeneous Traffic Condition (동질 트래픽 조건에서 IEEE 802.12 VG-AnyLAN 매체접근제어의 지연시간과 채널이용율 해석)

  • Joo, Gi-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.567-574
    • /
    • 2006
  • VG-AnyLAN is a local area network standard developed by the IEEE 802.12 project. While preserving the frame format of IEEE 802.3, VG-AnyLAN adopts a new medium access control called Demand Priority where transmission requests of stations are arbitrated by a control hub in a round-robin manner. Unlike CSMA/CD which is the medium access control of IEEE 802.3, the Demand Priority, while providing the maximum bound on the packet delay, does not put the limit on the network segment size. In this paper, we analyze the delay and the channel utilization performances of the medium access control of IEEE 802.12 VG-AnyLAN. We develope an analytic model of the system under assumptions that each station generates traffic of the equal priority and that the packets are of fixed length. Using the analytic model, we obtain the recursive expression of the average channel utilization and the average access delay The numerical results obtained via analysis are compared to the simulation results of the system for a partial validation of our analysis.

A Study on the Air Traffic Control Rule and Optimal Capacity of Air Base (항공교통관제규칙과 비행장의 최적규모에 관한 연구)

  • Lee Ki-Hyun
    • Journal of the military operations research society of Korea
    • /
    • v.2 no.1
    • /
    • pp.177-184
    • /
    • 1976
  • As the organizational size of a military service or business increases and its management becomes complex, the success in its management depends less on static type of management but more on careful, dynamic type of management. In this thesis, an operations research technique is applied to the problems of determining optimal air traffic control rule and of optimal capacity of air base for a military air base. An airport runway is regarded as the service facility in a queueing mechanism, used by landing, low approach, and departing aircraft. The usual order of service gives priority different classes of aircraft such as landings, departures, and low approaches; here service disciplines are considered assigning priorities to different classes of aricraft grouped according to required runway time. Several such priority rules are compared by means of a steady-state queueing model with non-preemptive priorities. From the survey conducted for the thesis development, it was found that the flight pattern such as departure, law approach, and landing within a control zone, follows a Poisson distribution and the service time follows an Erlang distribution. In the problem of choosing the optimal air traffic control rule, the control rule of giving service priority to the aircraft with a minimum average waiting cost, regardless of flight patterns, was found to be the optimal one. Through a simulation with data collected at K-O O Air Base, the optimal take-off interval and the optimal capacity of aircraft to be employed were determined.

  • PDF

Simulation of Traffic Signal Control with Adaptive Priority Order through Object Extraction in Images (영상에서 객체 추출을 통한 적응형 통행 우선순위 교통신호 제어 시뮬레이션)

  • Youn, Jae-Hong;Ji, Yoo-Kang
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1051-1058
    • /
    • 2008
  • The advancement of technology for image processing and communications makes it possible for current traffic signal controllers and vehicle detection technology to make both emergency vehicle preemption and transit priority strategies as a part of integrated system. Present]y traffic signal control in crosswalk is controlled by fixed signals. The signal control keeps regular signals traffic even with no traffic, when there is traffic, should wait until the signal is given. Waiting time causes the risk of traffic accidents and traffic congestion in accordance with signal violation. To help reduce the risk of accidents and congestion, this paper explains traffic signal control system for the adaptive priority order so that signal may be preferentially given in accordance with the situation of site through the object detect images.

  • PDF

A Study of New Production Input Control in an Agile Manufacturing Environment (신속제조환경에서의 새로운 생산입력통제방식에 관한 연구)

  • Kim, Hyun-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.4
    • /
    • pp.699-708
    • /
    • 1997
  • Production control is usually composed of due-dote assignment, production input control, and priority dispatching rule. A production input control(PIC) is mainly to control the WIP level on the shop floor. On the other hand, a priority dispatching rule(PDR) is mainly to control the tardiness/earliness of on order and number of tardy jobs. Therefore, if we select a particular PIC which can control only a particular performance measure(i.e., tardiness), it may cause worsening other performance measure(i.e., WIP level, shopfloor time, etc.) This newly developed production input control, DRD(Dual Release-Dates), is mainly designed to control the WIP level on the shop floor by employing two different release-dates of an order(earliest release. date and latest release-date and the release condition (relationship between the current WIP level and the pre-defined maximum WIP level) while trying to meet the due-date of the order.

  • PDF

A Passive Traffic Signal Priority Control Algorithm for Emergency Vehicles (긴급차량 우선신호 센터제어 알고리즘 개발)

  • Lee, Jongwoo;Lee, Soong-bong;Lee, Jinsoo;Um, Ki Hun;Lee, Young-Ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.110-119
    • /
    • 2017
  • This study develops a passive traffic signal priority control algorithm for emergency vehicles. The passive priority control estimates and applies signal times for each signalized intersection on the emergency vehicle's route when an emergency call is received. As signals are controlled before the emergency vehicle leaves for its destination, it is possible to clear the queues at each intersection more effectively. Most of the previous studies applied preemption, which ends green time of cross streets when the emergency vehicle arrives at each intersection. This study applies green extension and early green in order not to shift the order of phases, and guarantees minimum green time for each phase. Simulation results show that the delay of emergency vehicles decreases when the signals are controlled. It is expected that delays can be decreased further by integrating the active priority control with the passive priority control algorithm presented in this study.