• 제목/요약/키워드: Prion Disease

검색결과 31건 처리시간 0.025초

일본에서 소해면상뇌증(BSE)의 현재 상황 (The risk assessment, outbreak and control of BSE in Japan)

  • Yokoyama, T.
    • 한국환경농학회:학술대회논문집
    • /
    • 한국환경농학회 2009년도 정기총회 및 국제심포지엄
    • /
    • pp.283-297
    • /
    • 2009
  • Bovine spongiform encephalopathy (BSE) has become an important concern in food safety. Until now, 36 cases of BSE have been detected in Japan. Control programs have led to a decrease in the annual numbers, and Japan has now been categorized as a "controlled risk" country by the World Animal Health Organization (OIE). In spite of a worldwide decrease in the number of BSE cases, sporadic occurrences of atypical BSE cases have been reported. In Japan, 2 atypical BSE cases were confirmed. A Japanese L-type-BSE (BSE/JP24) has exhibited transmissibility to bovinized transgenic mice (TgBoPrP) it has a shorter incubation period than that of classical BSE. Although the origin of atypical BSE is obscure, risk analysis of newly emerged BSE prions of cattle and humans is required.

  • PDF

Biochemical Analysis of Interaction between Kringle Domains of Plasminogen and Prion Proteins with Q167R Mutation

  • Lee, Jeongmin;Lee, Byoung Woo;Kang, Hae-Eun;Choe, Kevine K.;Kwon, Moosik;Ryou, Chongsuk
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.1023-1031
    • /
    • 2017
  • The conformational change of cellular prion protein ($PrP^C$) to its misfolded counterpart, termed $PrP^{Sc}$, is mediated by a hypothesized cellular cofactor. This cofactor is believed to interact directly with certain amino acid residues of $PrP^C$. When these are mutated into cationic amino acid residues, $PrP^{Sc}$ formation and prion replication halt in a dominant negative (DN) manner, presumably due to strong binding of the cofactor to mutated $PrP^C$, designated as DN PrP mutants. Previous studies demonstrated that plasminogen and its kringle domains bind to PrP and accelerate $PrP^{Sc}$ generation. In this study, in vitro binding analysis of kringle domains of plasminogen to Q167R DN mutant PrP (PrPQ167R) was performed in parallel with the wild type (WT) and Q218K DN mutant PrP (PrPQ218K). The binding affinity of PrPQ167R was higher than that of WT PrP, but lower than that of PrPQ218K. Scatchard analysis further indicated that, like PrPQ218K and WT PrP, PrPQ167R interaction with plasminogen occurred at multiple sites, suggesting cooperativity in this interaction. Competitive binding analysis using $\small{L}$-lysine or $\small{L}$-arginine confirmed the increase of the specificity and binding affinity of the interaction as PrP acquired DN mutations. Circular dichroism spectroscopy demonstrated that the recombinant PrPs used in this study retained the ${\alpha}$-helix-rich structure. The ${\alpha}$-helix unfolding study revealed similar conformational stability for WT and DN-mutated PrPs. This study provides an additional piece of biochemical evidence concerning the interaction of plasminogen with DN mutant PrPs.

Cigarette Smoke Attenuates Histopathological and Neurobiological Changes Caused by 87V Scrapie Agent Infection in IM Mice

  • Sohn Hyung-Ok;Hyun Hak-Chul;Shin Han-Jae;Han Jung-Ho;Park Chul-Hoon;Moon Ja-Young;Lim Heung-Bin;Kim Yong-Sun;Lee Dong-Wook
    • 한국연초학회지
    • /
    • 제27권2호
    • /
    • pp.212-218
    • /
    • 2005
  • Cigarette smoking has been known to have a few beneficial effects on some neuronal diseases such as Alzheimer's disease(AD), Parkinson's disease(PD) and prion disease by scrapie agent shows many similar properties with AD. In this respect, we investigated what biological effects are exerted by cigarette smoke exposure(CSE) in the brain of mouse infected by 87V scrapie. The scrapie agent was inoculated through stereotaxic microinjection of the homogenates of the scrapie agent infected brain into the intracerebral system in the 1M mice. The inoculation into mice typically exhibits neurochemical, physiological and histopathological characteristics of prion disease: loss of neurotransmitters and induction of astrocytosis and vacuolation in brain as well as reduction of spatial movement and loss of body weight. CSE led to alleviated the loss of body weight and also improved spatial movement of the infected mice. Most interestingly, CSE attenuated astrocytosis and vacuolation caused by scrapie infection in the brain. In addition, decreased levels of dopamine in striatal and hypothalamic regions as well as serotonin level in hippocampus caused by scrapie infection were also attenuated by exposure to cigarette smoke. These findings suggest that cigarette smoke, by its inhibition of astrocytosis and vacuolation followed by its restoration of levels of some neurotransmitters, may partly contribute to suppression in the progress of neurodegeneration caused by scrapie infection.

Identification of Single Nucleotide Polymorphisms in PRNP Gene of Korean Native Goats

  • Hoque, Md. Rashedul;Yu, Seong-Lan;Yeon, Seong-Heum;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • 제51권6호
    • /
    • pp.453-458
    • /
    • 2009
  • Prion protein (PRNP) is known to be a causative protein for transmissible spongiform encephalopathy (TSE), a disease occurring in human and animals. Previous results indicate that the genetic variability can affect the resistance and susceptibility of goat scrapie and can give the guideline for reducing the risk of this disease. Until now, 35 single nucleotide polymorphisms (SNPs) were identified in goat PRNP gene from many countries such as Great Britain, Italy, United States of America and Asian countries etc. In this study, SNPs in PRNP gene have been investigated to research the PRNP variations and their possible TSE risks in 60 Korean native goats. Based on the sequencing results, we identified four SNPs and three of those polymorphisms (G126A, C414T and C718T) were synonymous and the A428G polymorphism was non-synonymous which changes the amino acid histidine to arginine. Previously, all of these four SNPs were identified in Asian native goats. Specifically, five polymorphisms were identified in Asian native goats and two of them (G126A and C414T) were silent mutations, and the other SNPs (T304G, A428G and T718C) caused amino acid changes (W102G, H143R and S240P). Comparing with SNP results from other breeds, this study is an initial step to understand resistance and susceptibility of this disease in Korean native goats.

Pekingese에서의 Neuronal Vacuolation (Neuronal Vacuolation in a Pekingese)

  • 김재훈;김진현;윤화영;박영찬;김대용;임정식
    • 한국임상수의학회지
    • /
    • 제19권2호
    • /
    • pp.247-249
    • /
    • 2002
  • A 6-month-old female Pekingese was euthanized due to poor progrosis after 1 month history of neurologic signs that include depression, ataxia, urination and defecation difficulty. At necropsy, no significant gross abnormalities were noted Histologically, neuronal vacuolation was noted in the brain, primarily cerebellum and occasionally in the brain stem area. Neuronal necrosis and secondary axonal swelling were also observed. Differential diagnoses were able to rule out other diseases which can induce neuronal vacuolation such as lysosomal storage disease, prion infection, and postvaccinal change.

A proteomic approach to identify of yeast proteins that related with accumulation of misfolded protein in cell

  • Shin, Yong-Seung;Seo, Eun-Joo;Kim, Joon;Yu, Myeong-Hee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.64-64
    • /
    • 2003
  • In growing number of diseases it has been shown that the aggregation of specific proteins has an important role in the pathogenesis of the disorder. This has been demonstrated in structural detail with the liver cirrhosis of ${\alpha}$$_1$-antitrypsin deficiency, and it is now believed that similar protein aggregation underlies many neurodegenerative disorders such as autosomal dominant Parkinson disease, prion diseases, Alzheimer disease, Huntington disease.

  • PDF

A proteomic approach to identify yeast proteins responding to accumulation of misfolded proteins inside the cells

  • Shin, Yong-Seung;Seo, Eun-Joo;Kim, Joon;Yu, Myeong-Hee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.57-57
    • /
    • 2003
  • In growing number of diseases it has been shown that aggregation of specific proteins has an important role in pathogenesis of the disorder. This has been demonstrated in structural details with the liver cirrhosis of ${\alpha}$$_1$-antitrypsin deficiency, and it is now believed that similar protein aggregation underlies many neurodegenerative disorders such as autosomal dominant Parkinson disease, prion diseases, Alzheimer disease, and Huntington disease. ${\alpha}$$_1$-Antieypsin, a member of serine pretense inhibitor (serpin) family, functions as an inhibitor of neutrophil elastase.

  • PDF

New insight into transglutaminase 2 and link to neurodegenerative diseases

  • Min, Boram;Chung, Kwang Chul
    • BMB Reports
    • /
    • 제51권1호
    • /
    • pp.5-13
    • /
    • 2018
  • Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including $amlyoid-{\beta}$, tau, ${\alpha}-synuclein$, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.

Creutzfelt Jacob Disease 의증 환자에 대한 임상보고 (A Case Study of the Creutzfelt Jacob Disease Suspected Patient)

  • 이희승;강태곤;김정주;한경석;배효상;박성식
    • 사상체질의학회지
    • /
    • 제18권2호
    • /
    • pp.139-147
    • /
    • 2006
  • 1. Objectives Creutzfelt Jacob Disease is one of a group of neurodegenerative disorders causing spongiform encephalopathies due to a infection of prion or unconventional slow virus on central nerve system. The diagnosis of this disease is not easy and there is currently no cure. This article is to report our case about a female patient who was not diagnosed as CJD at the early period so that we treated her with Yangkyuksanhwa-tang(凉膈散火湯) and Jihwangbaekho-tang(地黃白虎湯). 2. Methods Magnetic resonance imaging(brain MRI), blood test and computer tomography were performed. The treatment for this patient was clinically based on Sasang Constitutional Medicine. 3. Results and Conclusions (1) Visual field defect, ataxia, myoclonus, sweating and dysuria were the main symptoms of the patient. (2) The pathological change in parenchyme was not revealed during the early periods by MR imaging. So the diagnosing CJD was not possible during the time in this case. (3) Jihwangbaekho-tang(地黃白虎湯) improved her myoclonus and sweating. Bur her mental disorder and the progress of the pathological change in the parenchyme was not able to be treated.

  • PDF

Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation

  • Bhak, Ghi-Bom;Choe, Young-Jun;Paik, Seung-R.
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.541-551
    • /
    • 2009
  • Amyloidogenesis defines a condition in which a soluble and innocuous protein turns to insoluble protein aggregates known as amyloid fibrils. This protein suprastructure derived via chemically specific molecular self-assembly process has been commonly observed in various neurodegenerative disorders such as Alzheimer's, Parkinson's, and Prion diseases. Although the major culprit for the cellular degeneration in the diseases remains unsettled, amyloidogenesis is considered to be etiologically involved. Recent recognition of fibrillar polymorphism observed mostly from in vitro amyloidogeneses may indicate that multiple mechanisms for the amyloid fibril formation would be operated. Nucleation-dependent fibrillation is the prevalent model for assessing the self-assembly process. Following thermodynamically unfavorable seed formation, monomeric polypeptides bind to the seeds by exerting structural adjustments to the template, which leads to accelerated amyloid fibril formation. In this review, we propose another in vitro model of amyloidogenesis named double-concerted fibrillation. Here, two consecutive assembly processes of monomers and subsequent oligomeric species are responsible for the amyloid fibril formation of $\alpha$-synuclein, a pathological component of Parkinson's disease, following structural rearrangement within the oligomers which then act as a growing unit for the fibrillation.