• 제목/요약/키워드: Printing orientation

검색결과 44건 처리시간 0.03초

Comparison of Flexural Strength of Three-Dimensional Printed Three-Unit Provisional Fixed Dental Prostheses according to Build Directions

  • Park, Sang-Mo;Park, Ji-Man;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young
    • Journal of Korean Dental Science
    • /
    • 제12권1호
    • /
    • pp.13-19
    • /
    • 2019
  • Purpose: The aim of this study was to compare the flexural strength of provisional fixed dental prostheses which was three-dimensional (3D) printed by several build directions. Materials and Methods: A metal jig with two abutment teeth and pontic space in the middle was fabricated. This jig was scanned with a desktop scanner and provisional restoration was designed on dental computer-aided design program. On the preprocessing software, the build angles of the restorations were arranged at $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ and support was added and resultant structure was sliced to a thickness of $100{\mu}m$. Processed restorations were printed with digital light processing type 3D printer using poly methyl meta acrylate-based resin. After washing and post-curing, compressive loading was applied at a speed of 1 mm/min on a metal jig fixed to a universal testing machine. The maximum pressure at which fracture occurred was measured. For the statistical analysis, build direction was set as the independent variable and fracture strength as the dependent variable. One-way analysis of variance and Tukey's post hoc analysis was conducted to compare fracture strength among groups (${\alpha}=0.05$). Result: The mean flexural strength of provisional restoration 3D printed with the build direction of $0^{\circ}$ was $1,053{\pm}168N$; it was $1,183{\pm}188N$ at $30^{\circ}$, $1,178{\pm}81N$ at $45^{\circ}$, $1,166{\pm}133N$ at $60^{\circ}$, and $949{\pm}170N$ at $90^{\circ}$. The group with a build direction of $90^{\circ}$ showed significantly lower flexural strength than other groups (P<0.05). The flexural strength was significantly higher when the build direction was $30^{\circ}$ than when it was $90^{\circ}$ (P<0.01). Conclusion: Among the build directions $0^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, and $90^{\circ}$ set for 3D printing of fixed dental prosthesis, an orientation of $30^{\circ}$ is recommended as an effective build direction for 3D printing.

수열합성법으로 성장된 ZnO 나노로드 가스 센서의 제작 및 특성 연구 (Characteristics and Preparation of Gas Sensor Using ZnO Nanorods Grown by Hydrothermal Process)

  • 정종훈;유일
    • 한국재료학회지
    • /
    • 제21권4호
    • /
    • pp.232-235
    • /
    • 2011
  • ZnO nanorods for gas sensors were prepared by a hydrothermal method. The ZnO gas sensors were fabricated on alumina substrates by a screen printing method. The gas-sensing properties of the ZnO nanorods were investigated for $CH_4$ gas. The effects of growth time on the structural and morphological properties of the ZnO nanorods were investigated by X-ray diffraction and scanning electron microscope. The XRD patterns of the nanocrystallized ZnO nanorods showed a wurtzite structure with the (002) predominant orientation. The diameter and length of the ZnO nanorods increased in proportion to the growth time. The sensitivity of the ZnO sensors to 5 ppm $CH_4$ gas was investigated for various growth times. The ZnO sensors exhibited good sensitivity and rapid response-recovery characteristics to $CH_4$ gas, and both traits were dependent on the growth time. The highest sensitivity of the ZnO sensors to $CH_4$ gas was observed with the growth time of 7 h. The response and recovery times were 13 s and 6 s, respectively.

수열합성법으로 제조된 Co3O4 분말을 사용한후막 가스센서의 CO 감지 특성 (The CO sensing properties of thick film gas sensor using Co3O4 powders prepared by hydrothermal reaction method)

  • 김광희;김정규;박기철
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.385-390
    • /
    • 2010
  • CO sensing thick film gas sensors using $Co_3O_4$ powders prepared by hydrothermal reaction method, were fabricated, and their structural, electrical and CO gas sensing properties were investigated. The specific surface area of the $Co_3O_4$ powders obtained from BET analysis was about 79.0 $m^2/g$. XRD and SEM results show that the thick films heat-treated at $500^{\circ}C$ for 30 min after screen printing had the preferred orientation of (311) direction and the crystalline size was calculated to 221 $\AA$. The maximum activation energy obtained from the temperature-resistance characteristics was 3.11 eV in the temperature range of $290^{\circ}C$ to $310^{\circ}C$. The sensitivity to 1,000 ppm CO was about 150 %. The specific surface area, crystalline size, and maximum activation energy were increased significantly and the sensitivity for CO gas was improved largely.

Fabrication of sub-micron sized organic field effect transistors

  • 박성찬;허정환;김규태;하정숙
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.84-84
    • /
    • 2010
  • In this study, we report on the novel lithographic patterning method to fabricate organic-semiconductor devices based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries (MIMIC) and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce the atomic layer deposition of $Al_2O_3$ film on pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated sub-micron sized pentacene FETs and measured their electrical characteristics.

  • PDF

선택적 레이저 소결 제작 폴리아미드 12 시편의 온도별 굴곡 특성 연구 (Study on Flexural Properties of Polyamide 12 according to Temperature produced by Selective Laser Sintering)

  • 김무선
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.319-325
    • /
    • 2018
  • 3D 프린팅 (적층 공정) 기술은 소재와 공정기술의 지속적인 연구개발을 토대로 초기 모형 제작 활용으로부터 현재는 산업현장의 양산형 부품 제작까지 그 쓰임새가 확대되고 있다. 3D 프린팅의 대표적인 고분자 소재로서 고강도 엔지니어링 플라스틱의 하나인 polyamide (폴리아미드) 계열의 소재는 제품의 경량화 및 내구성의 장점으로 자동차용 부품 제작에 주로 활용된다. 이번 연구에서는 적층기법 중 제작품의 물성이 우수한 선택적 레이저 소결 기법 (Selective Laser Sintering)을 적용하여 polyamide 12 (PA12) 및 글라스 비드 (glass bead) 보강 PA12 소재 2가지를 대상으로 시편을 제작하고 온도에 따른 굴곡특성을 분석하였다. 작업 플랫폼 기준으로 $0^{\circ}$, $45^{\circ}$, $90^{\circ}$ 방향으로 각 시편을 제작 후, $-25^{\circ}C$, $25^{\circ}C$, $60^{\circ}C$ 등 3개 시험온도 환경에서 굴곡 테스트를 진행하였다. 그 결과로, PA12 는 $-25^{\circ}C$ 에서 $90^{\circ}$ 제작 방향이, $25^{\circ}C$$60^{\circ}C$에서는 $0^{\circ}$ 제작방향이 최대 굴곡강도를 가졌다. 글라스비드 보강 PA12는 제작방향이 $0^{\circ}$인 겨우 모든 시험온도에서 최대 굴곡강도 값을 보였다. 두 소재의 서로 다른 굴곡강도 변화 경향은 굴곡시험시 발생하는 응력 종류에 따라 적층 레이어 평면 방향에 의한 영향이 서로 다르기 때문으로 판단된다.

SnO2 나노 분말의 합성 및 가스 감응 특성 (Gas Sensing Characteristics and Preparation of SnO2 Nano Powders)

  • 이지영;유윤식;유일
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

HOG 기반의 적응적 평활화를 이용한 스캔된 영상의 하프톤 잡음 제거 (Halftone Noise Removal in Scanned Images using HOG based Adaptive Smoothing Filter)

  • 허규성;백열민;김회율
    • 방송공학회논문지
    • /
    • 제17권2호
    • /
    • pp.316-324
    • /
    • 2012
  • 본 논문에서는 영상의 그래디언트의 히스토그램 (HOG)에 기반한 적응적 평활화 필터를 이용하여 스캔된 하프톤 문서의 하프톤 잡음 제거 방법을 제안한다. 하프톤 잡음은 잡음의 편차가 커서 에지 영역과 유사한 특성을 나타내므로 일반적인 에지 보존 평활화 필터를 적용할 경우에는 잡음 제거 효과가 떨어진다. 또한 인쇄물에 주로 사용되는 집중형 도트 방식의 하프톤은 컬러 영상에서 채널간의 간섭 현상으로 인해 모아레 패턴을 생성한다. 따라서 본 논문에서는 스캔된 하프톤 문서의 하프톤 잡음과 모아레 패턴을 효과적으로 제거하기 위해 하프톤 잡음의 방향성에 기반한 적응적 평활화 필터 방법을 제안한다. 하프톤 잡음의 경우 영상의 에지와 달리 등방성을 가지므로 영상을 블록 단위로 나누어 지배적인 에지의 크기와 방향성을 살핌으로써 적응적 평활화 필터를 구성할 수 있다. 실험 결과, 제안하는 방법은 다양한 인쇄 매체를 통해 생성된 하프톤 문서에 대하여 효과적으로 하프톤 잡음을 제거하면서도 영상의 에지를 보존하는 것을 확인할 수 있었다.

입자크기에 따른 SnO2:Ni 가스센서의 감응 특성 (Effect of the Particle Size of SnO2:Ni on Gas Sensing Properties)

  • 이지영;유일
    • 한국재료학회지
    • /
    • 제21권4호
    • /
    • pp.207-211
    • /
    • 2011
  • Ni 8 wt.%-doped tin oxide ($SnO_2$) thick films were fabricated into gas sensors by the method of screen printing onto alumina substrates. The particle size of $SnO_2$ was controlled by changing the ball-mill time between 0~120 h. The structural and morphological properties of these thick films were investigated using X-ray diffraction and scanning electron microscopy. The structural properties of $SnO_2$ powders showed a tetragonal phase with (110) dominant orientation. The particle size of the $SnO_2$:Ni powders after ball-mill of 120 h was about 0.05 ${\mu}m$. The gas sensitivity (S = Rg/Ra) to 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air (Ra) with that of the target gases (Rg). The sensitivity of the $SnO_2$ gas sensors was enhanced by increasing the ball-mill time. There was an association between the sensitivity of both the $CH_4$ gas and the $CH_3CH_2CH_3$ gas and the particle size of the $SnO_2$. $SnO_2$ gas sensors prepared by 72 h ball-mill showed a sensitivity of about 13 to 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas. The response time of the $SnO_2$:Ni gas sensors to the $CH_4$ gas was about 20 seconds.

종이 표면 사이즈 프레스용 전분의 적용에 관한 연구 -표면 사이즈용 전분이 백상지 품질에 미치는 영향 - (Studies on the Application of Starch for paper surface sizing(III) - The influence of surface sizing treatment with starch on the quality of uncoated printing paper -)

  • 윤지영;이용규
    • 펄프종이기술
    • /
    • 제34권2호
    • /
    • pp.1-12
    • /
    • 2002
  • Starch dissolved in paper-mill wastes, either as a result of poor retention on the paper web or recycling of surface-treated broke, was a major pollutant Laboratory tests were performed by using different kinds of starch as a surface treatment. It was concluded that the use of cationic starch can positively affect the level of starch dissolved in liquid effluents. When cationically modified starches were used for surface sizing, the starch was tightly bound to the paper fibers, it was not removed during the repulping of broke. The result of mill trial in fine paper manufacture for the application of low-viscosity cationic starches used in size press reduced COD load in the effluents and increased One Pass Retention. It had been found that when cationic starch used as a surface sizing agent, more starch was retained on or near the surface of the sheet than with conventional oxidized starches. Thus surface strengths and quality were improved. In addition it is possible to maintain the desired level of starch penetration into the fiber net and improve porosity, opacity and brightness. In contrast, in most cases, dusting problems are notably eliminated. Cationic surface sized starch improved black and color ink-jet print quality in terms of feathering and optical density of the print image. These improved properties were believed to be due to a combination of fiber bonding and surface orientation more uniform starch concentration on the paper surface was resulted. Moreover cationic charges in the paper surface lend themselves excellently to fix ink jet ink anionic in nature.

적층조형 폴리머 재료의 기계적 물성 연구 (A Study on the Mechanical Properties of Additive Manufactured Polymer Materials)

  • 김동범;이인환;조해용
    • 대한기계학회논문집A
    • /
    • 제39권8호
    • /
    • pp.773-780
    • /
    • 2015
  • 적층조형(additive manufacturing, AM)은 액체, 고체 상태인 폴리머, 금속 등의 재료를 층층이 쌓아서 3 차원 형상을 제조하는 기술이다. AM 기술은 제품 개발 초기단계에서 시제품 제작에 주로 사용되었으나, 최근 들어 이를 실제 제품제작에 적용하는 것에 대한 관심이 높아지고 있다. 한편 AM 기술에서 적층방향은 최종성형품의 기계적 물성에 영향을 줄 수 있다. 따라서 본 연구에서는 폴리머 재료를 사용하는 대표적인 AM 기술인 FDM, PolyJet 그리고 SLA 방식으로 제작되는 재료의 기계적 물성을 실험을 통해 파악하여 보았다. 이때 시험편의 형상은 ASTM D 638 을 참고하였고 적층방향을 달리하여 성형하였다. 시험편의 인장시험으로부터 얻은 응력-변형률 선도를 바탕으로 기계적 물성을 조사하였다. 또한 시험편의 파단부를 SEM 촬영하여 물성차이의 결과를 분석하였다.