• Title/Summary/Keyword: Printed electronics

Search Result 630, Processing Time 0.036 seconds

Crosstalk Analysis on Printed Circuit Board (인쇄뢰로기판의 누화해석)

  • 박경희;김제영;김수중
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.700-707
    • /
    • 1991
  • Transmission line crosstalk of a printed circuit baord terminated with the linear resistive and nonlinear terminal network is analyzed. Based on a quasi-static approximation, crosstalk voltage is computed in frequency domain by applying the modal analysis. A scheme to calculate the maximum crosstalk voltage for a line terminated with the nonlinear digital gate is proposed. And also, crosstalk quantities are numerically obtained for the microstrip and strip line, and compared with the experimental data to validate relevance of this method.

  • PDF

Search for Phosphors for Use in Displays and Lightings using Heuristics-based Combinatorial Materials Science

  • Sharma, Asish Kumar;Sohn, Kee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.207-210
    • /
    • 2009
  • According to the recent demand for materials for use in various displays and solid state lightings, new phosphors with improved performance have been pursued consistently. Multi objective genetic algorithm assisted combinatorial material search (MOGACMS) strategies have been applied to various multi-compositional inorganic systems to search for new phosphors and to optimize the properties of phosphors.

  • PDF

Oxidation-free Cu material for printed electronics

  • Kim, Sang-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.16.2-16.2
    • /
    • 2009
  • Developing a low cost printing material that can replace silver for the formation of a conducting pattern is an important issue in printed electronics. We report a novel approach using a non-oxidized copper material during the printing and sintering process under ambient conditions, which was previously considered unachievable. An attempt was made to understand the conversion process of cuprous oxide nanoparticle aggregates on metallic copper crystals through chemical reduction in the solution phase. The detailed mechanism for this conversion, including the role of the surfactant and crystal growth, was examined.

  • PDF

Thin Film Energy Storage Device with Spray-Coated Sliver Paste Current Collector

  • Yoon, Seong Man;Jang, Yunseok;Jo, Jeongdai;Go, Jeung Sang
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.874-879
    • /
    • 2017
  • This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass-manufacturable spray-coating technology enables the fabrication of two different half-cell electric double layer capacitors (EDLC) with a spray-coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half-cell EDLC with the spray-coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half-cell EDLC with the spray-coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from -0.5 V to 0.5 V, the spray-coated thin film energy storage device exhibits a better performance.

Printed Folded Antenna for Dual-Band WLAN Operations

  • Chae, Gyoo-Soo;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.3
    • /
    • pp.124-127
    • /
    • 2004
  • A novel printed inverted-F antenna for dual-band WLAN is presented. The proposed design is based on the folded quarter-wave antennas, which have a conductor plate having two arms. An extremely thin prototype antenna is fabricated according to the simulation result. The obtained antenna can perform in IEEE802.11a, b(2.4~2.484 GHz and 5.15~5.35 GHz bands) and be adopted for laptop applications. All the measurements are performed in the actual test fixture.

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

Fluidically-Controlled Phase Tunable Line Using Inkjet-Printed Microfluidic Composite Right/Left Handed Transmission Line (유체를 이용하여 위상응답을 제어하기 위해 잉크젯 프린팅으로 구현한 미세유체채널 복합 좌·우향 전송선로)

  • Choi, Sungjin;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, a novel fluid controlled phase tunable line using inkjet printed microfluidic composite right/left-handed(CRLH) transmission line(TL) is proposed. A CRLH-TL prototype has been inkjet-printed on a paper substrate using silver nano particle ink. In addition, a laser-etched microfluidic channel in poly methyl methacrylate(PMMA) has been integrated with the CRLH TL using inkjet-printed SU-8 as a bonding material. The proposed TL provides excellent phase-tuning capability that is dependent on the different fluidic materials used. As the fluid is changed, the proposed TL can have negative-phase, zero-phase, and positive-phase characteristics at 900 MHz and reflection coefficient is maintained to below -10 dB. The performance of the proposed TL is successfully validated using simulation and measurement results.

Technology Trend of Printed Electronics (인쇄전자 기술동향)

  • You, I.K.;Koo, J.B.;Noh, Y.Y.;Yu, B.G.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.6
    • /
    • pp.41-51
    • /
    • 2009
  • 인쇄전자(printed electronics) 기술은 인쇄(graphic art printing)가 가능한 기능성전자 잉크소재를 이용하여 초저가격의 프린팅 공정을 통해서 다양한 전자소자를 제작하는 기술로서, 차세대 모바일 IT 기기의 제작에 적합한 전자제품을 생산하는 데 적합한 공정 기술로 인식되고 있다. 현재 기술 수준이 일부 요소 부품을 제작하는 수준에 머무르고 있으나, 여러 가지 잉크소재 및 다양한 초미세 인쇄공정 기술의 개발이 진행됨에 따라 향후 다양한 공정 분야에 적용될 것으로 예상되며, 궁긍적으로 전자제품을 생산하는 기존 반도체 공정을 대체하는 공정으로 자리매김을 할 것으로 예상된다. 특히 인쇄공정 기술은 저온에서 공정이 가능한 기능성 잉크소재들의 개발을 통해서 유연한 플라스틱 기판에 전자소자를 제작하는 플렉시블 전자소자(flexible electronics) 기술과 높은 공정 결합성을 지니고 있으며 이들 공정을 결합하여 향후 연속 공정(roll-to-roll)의 구현이 가능할 것으로 예상된다. 본 기고문에서는 이러한 인쇄전자 기술의 개발동향에 대해서 기술하였다.