• 제목/요약/키워드: Principal diagnosis

검색결과 189건 처리시간 0.034초

Application of principal component analysis and wavelet transform to fatigue crack detection in waveguides

  • Cammarata, Marcello;Rizzo, Piervincenzo;Dutta, Debaditya;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • 제6권4호
    • /
    • pp.349-362
    • /
    • 2010
  • Ultrasonic Guided Waves (UGWs) are a useful tool in structural health monitoring (SHM) applications that can benefit from built-in transduction, moderately large inspection ranges and high sensitivity to small flaws. This paper describes a SHM method based on UGWs, discrete wavelet transform (DWT), and principal component analysis (PCA) able to detect and quantify the onset and propagation of fatigue cracks in structural waveguides. The method combines the advantages of guided wave signals processed through the DWT with the outcomes of selecting defect-sensitive features to perform a multivariate diagnosis of damage. This diagnosis is based on the PCA. The framework presented in this paper is applied to the detection of fatigue cracks in a steel beam. The probing hardware consists of a PXI platform that controls the generation and measurement of the ultrasonic signals by means of piezoelectric transducers made of Lead Zirconate Titanate. Although the approach is demonstrated in a beam test, it is argued that the proposed method is general and applicable to any structure that can sustain the propagation of UGWs.

Assisted Magnetic Resonance Imaging Diagnosis for Alzheimer's Disease Based on Kernel Principal Component Analysis and Supervised Classification Schemes

  • Wang, Yu;Zhou, Wen;Yu, Chongchong;Su, Weijun
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.178-190
    • /
    • 2021
  • Alzheimer's disease (AD) is an insidious and degenerative neurological disease. It is a new topic for AD patients to use magnetic resonance imaging (MRI) and computer technology and is gradually explored at present. Preprocessing and correlation analysis on MRI data are firstly made in this paper. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Finally supervised classification schemes such as AdaBoost algorithm and support vector machine algorithm are used to classify the above features. Experimental results by means of AD program Alzheimer's Disease Neuroimaging Initiative (ADNI) database which contains brain structural MRI (sMRI) of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that the proposed method can effectively assist the diagnosis and analysis of AD. Compared with principal component analysis (PCA) method, all classification results on KPCA are improved by 2%-6% among which the best result can reach 84%. It indicates that KPCA algorithm for feature extraction is more abundant and complete than PCA.

Magnetocardiogram Topography with Automatic Artifact Correction using Principal Component Analysis and Artificial Neural Network

  • Ahn C.B.;Kim T.H.;Park H.C.;Oh S.J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권2호
    • /
    • pp.59-63
    • /
    • 2006
  • Magnetocardiogram (MCG) topography is a useful diagnostic technique that employs multi-channel magnetocardiograms. Measurement of artifact-free MCG signals is essenctial to obtain MCG topography or map for a diagnosis of human heart. Principal component analysis (PCA) combined with an artificial neural network (ANN) is proposed to remove a pulse-type artifact in the MCG signals. The algorithm is composed of a PCA module which decomposes the obtained signal into its principal components, followed by an ANN module for the classification of the components automatically. In the experiments with volunteer subjects, 97% of the decisions that were made by the ANN were identical to those by the human experts. Using the proposed technique, the MCG topography was successfully obtained without the artifact.

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

공정 이상원인의 비선형 통계적 방법을 통한 진단 (Identifying Causes of Industrial Process Faults Using Nonlinear Statistical Approach)

  • 조현우
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3779-3784
    • /
    • 2012
  • 산업체 공정의 실시간 공정 모니터링과 진단은 생산 제품의 품질과 안전을 보장하는데 반드시 필요한 활동들의 하나이다. 그중에서 공정 진단은 공정에 발생된 특정 이상상황의 원인을 밝혀내는 것으로서 조업자들이 이상상황의 근본원인을 보다 효과적으로 도출하는데 도움을 줄 수 있다. 본 논문에서는 비선형 KFDA 기법과 데이터 전처리기법을 이용한 이상원인 진단방법을 적용하고 이의 진단 성능을 기존 선형 기법에 기반한 PCA 진단방법과 비교한다. 실제 공정을 모사한 Tennessee Eastman 공정 시뮬레이터의 공정 데이터를 통한 사례연구를 수행한 결과 기존 선형 진단 방법론 대비 신뢰할 수 있는 진단 결과를 얻을 수 있었다.

성인 인터넷 중독진단 개선을 위한 요인분석 (Factor Analysis for Improving Adults' Internet Addiction Diagnosis)

  • 김종완;김희재
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.317-322
    • /
    • 2011
  • 한국정보화진흥원에서 개발한 한국형 성인 인터넷 중독 자가진단 척도인 K-척도는 4가지 요인의 20 문항으로 구성되어 있으며, 사용자의 설문응답값으로 인터넷 중독을 진단한다. 기존의 연구는 대부분 인터넷 중독의 원인을 찾으려는 시도였으며, 청소년 대상으로 수집된 표본을 가지고 그들의 인터넷 중독진단이 수행되었다. 본 연구의 목적은 통계 기법의 주성분분석과 데이터마이닝 기법인 의사결정트리를 이용하여 K-척도의 사용자군 분류를 판정하는 주요인을 발견하는 것이다. 실험 결과로부터 K-척도를 구성하는 4가지 요인 중 내성 및 몰입 요인이 성인 인터넷 중독진단에 가장 큰 영향을 주는 요인임을 알 수 있었다.

부호유향그래프와 동적 부분최소자승법에 기반한 화학공정의 다중이상진단 (Multiple-Fault Diagnosis for Chemical Processes Based on Signed Digraph and Dynamic Partial Least Squares)

  • 이기백;신동일;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.159-167
    • /
    • 2003
  • This study suggests the hybrid fault diagnosis method of signed digraph (SDG) and partial least squares (PLS). SDG offers a simple and graphical representation for the causal relationships between process variables. The proposed method is based on SDG to utilize the advantage that the model building needs less information than other methods and can be performed automatically. PLS model is built on local cause-effect relationships of each variable in SDG. In addition to the current values of cause variables, the past values of cause and effect variables are inputted to PLS model to represent the Process armies. The measured value and predicted one by dynamic PLS are compared to diagnose the fault. The diagnosis example of CSTR shows the proposed method improves diagnosis resolution and facilitates diagnosis of masked multiple-fault.

차원 축소 진동 신호를 이용한 신경망 기반 선박 엔진 고장진단에 관한 연구 (A study on fault diagnosis of marine engine using a neural network with dimension-reduced vibration signals)

  • 심기찬;이강수;변성훈
    • 한국음향학회지
    • /
    • 제41권5호
    • /
    • pp.492-499
    • /
    • 2022
  • 본 연구에서는 진동 신호의 차원 감소가 선박 엔진의 고장진단에 미치는 영향을 실험적으로 분석한 결과를 제시한다. 주성분 분석을 이용하여 513차원의 진동 신호를 1 ~ 15차원의 저차원 신호로 변환하여 차원 변화에 따른 고장진단 정확도의 변화를 관찰하였다. 실제 규모의 선박용 발전기 디젤 엔진에서 측정된 진동 신호를 사용하고, integrated gradients와 feature permutation 기법의 두 가지 변수 중요도 분석 알고리즘을 사용하여 차원 축소 신호의 기여도를 정량적으로 평가하였다. 실험 데이터 분석 결과, 사용하는 차원의 수가 증가할수록 결함 진단의 정확도가 향상되는 것으로 나타났다. 차원이 10 이상에 다다르면 거의 모든 고장상태가 정확하게 분류되었으며, 이는 고장진단 정확도를 저하시키지 않으면서도 진동 신호의 차원수를 크게 줄일 수 있음을 보여준다. 변수 중요도 분석에서도 차원 축소 주성분이 기존 통계적 특성보다 더 높은 기여도를 보였으며, 차원 축소된 진동 스펙트럼이 고장진단에 효과적으로 사용될 수 있음을 확인하였다.

Fault Diagnosis System based on Sound using Feature Extraction Method of Frequency Domain

  • Vununu, Caleb;Kwon, Oh-Heum;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.450-463
    • /
    • 2018
  • Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.

한의 입원환자분류체계의 중증도 분류방안 연구 (A Study on the Severity Classification in the KDRG-KM (Korean Diagnosis-Related Groups - Korean Medicine))

  • 류지선;김동수;이병욱;김창훈;임병묵
    • 대한한의학회지
    • /
    • 제38권3호
    • /
    • pp.185-196
    • /
    • 2017
  • Backgrounds: Inpatient Classification System for Korean Medicine (KDRG-KM) was developed and has been applied for monitoring the costs of KM hospitals. Yet severity of patients' condition is not applied in the KDRG-KM. Objectives: This study aimed to develop the severity classification methods for KDRG-KM and assessed the explanation powers of severity adjusted KDRG-KM. Methods: Clinical experts panel was organized based on the recommendations from 12 clinical societies of Korean Medicine. Two expert panel workshops were held to develop the severity classification options, and the Delphi survey was performed to measure CCL(Complexity and Comorbidity Level) scores. Explanation powers were calculated using the inpatient EDI claim data issued by hospitals and clinics in 2012. Results: Two options for severity classification were deduced based on the severity classification principle in the domestic and foreign DRG systems. The option one is to classify severity groups using CCL and PCCL(Patient Clinical Complexity Level) scores, and the option two is to form a severity group with patients who belonged principal diagnosis-secondary diagnosis combinations which prolonged length of stay. All two options enhanced explanation powers less than 1%. For third option, patients who received certain treatments for severe conditions were grouped into severity group. The treatment expense of the severity group was significantly higher than that of other patients groups. Conclusions: Applying the severity classifications using principal diagnosis and secondary diagnoses can advance the KDRG-KM for genuine KM hospitalization. More practically, including patients with procedures for severe conditions in a severity group needs to be considered.