• Title/Summary/Keyword: Principal component

Search Result 2,762, Processing Time 0.058 seconds

A Study on 4DOF Ship Dynamics in Maneuver by Principal Component Analysis (주성분 분석을 통한 선박 조종 중 4자유도 동역학 특성 연구)

  • Dong-Hwan Kim;Minchang Kim;Seungbeom Lee;Jeonghwa Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.29-43
    • /
    • 2024
  • The present study concerns a feasibility study for applying principal component analysis to ship dynamics in maneuver. Using the four degrees of freedom standard modular model for ship dynamics maneuver simulations of large angle zigzag tests with rudder deflection angle variations are conducted. The datasets of ship motion, hydrodynamic force, and moment during the maneuver are acquired to identify the principal modes. The covariance matrix of obtained ship dynamics variables shows a strong linear correlation between the motion, hydrodynamic force, and moment, except the surge force. Four eigenvectors of the covariance matrix are selected as the principal modes of ship dynamics. Using the principal modes, ship motion in turning circle and zigzag tests is reconstructed, showing good agreement with the original data.

Quantitative Analysis for Biomass Energy Problem Using a Radial Basis Function Neural Network (RBF 뉴럴네트워크를 사용한 바이오매스 에너지문제의 계량적 분석)

  • Baek, Seung Hyun;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.59-63
    • /
    • 2013
  • In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.

Magnetocardiogram Topography with Automatic Artifact Correction using Principal Component Analysis and Artificial Neural Network

  • Ahn C.B.;Kim T.H.;Park H.C.;Oh S.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.59-63
    • /
    • 2006
  • Magnetocardiogram (MCG) topography is a useful diagnostic technique that employs multi-channel magnetocardiograms. Measurement of artifact-free MCG signals is essenctial to obtain MCG topography or map for a diagnosis of human heart. Principal component analysis (PCA) combined with an artificial neural network (ANN) is proposed to remove a pulse-type artifact in the MCG signals. The algorithm is composed of a PCA module which decomposes the obtained signal into its principal components, followed by an ANN module for the classification of the components automatically. In the experiments with volunteer subjects, 97% of the decisions that were made by the ANN were identical to those by the human experts. Using the proposed technique, the MCG topography was successfully obtained without the artifact.

Classification for intraclass correlation pattern by principal component analysis

  • Chung, Hie-Choon;Han, Chien-Pai
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.589-595
    • /
    • 2010
  • In discriminant analysis, we consider an intraclass correlation pattern by principal component analysis. We assume that the two populations are equally likely and the costs of misclassification are equal. In this situation, we consider two procedures, i.e., the test and proportion procedures, for selecting the principal components in classifica-tion. We compare the regular classification method and the proposed two procedures. We consider two methods for estimating error rate, i.e., the leave-one-out method and the bootstrap method.

International Inflation Synchronization and Implications

  • CHON, SORA
    • KDI Journal of Economic Policy
    • /
    • v.42 no.2
    • /
    • pp.57-84
    • /
    • 2020
  • This study analyzes global inflation synchronization and derives policy implications for the Korean economy. Unlike previous studies that assume a single global inflation factor, this study investigates if inflation in Korea can be explained further by other global inflation factors. Our principal component analysis provides three principal components for global inflation that are linked to the Korea inflation rate - the first component is closely related to OECD inflation, and the second and third components reflect China's inflation. This study empirically demonstrates via in-sample fitting and out-of-sample forecasting that the three principal components of global inflation play a significant role in explaining and predicting Korean inflation in the short-term, while their role is limited in the mid-term. Domestic macroeconomic variables are found to be more important for the mid-term movements of the Korean inflation rate. The empirical results here suggest that the Bank of Korea should focus more on domestic economic conditions than on global inflation when implementing monetary policy because global factors are likely to be already reflected in domestic macro-variables in the mid-term.

Regional Geological Mapping by Principal Component Analysis of the Landsat TM Data in a Heavily Vegetated Area (식생이 무성한 지역에서의 Principal Component Analysis 에 의한 Landsat TM 자료의 광역지질도 작성)

  • 朴鍾南;徐延熙
    • Korean Journal of Remote Sensing
    • /
    • v.4 no.1
    • /
    • pp.49-60
    • /
    • 1988
  • Principal Component Analysis (PCA) was applied for regional geological mapping to a multivariate data set of the Landsat TM data in the heavily vegetated and topographically rugged Chungju area. The multivariate data set selection was made by statistical analysis based on the magnitude of regression of squares in multiple regression, and it includes R1/2/R3/4, R2/3, R5/7/R4/3, R1/2, R3/4. R4/3. AND R4/5. As a result of application of PCA, some of later principal components (in this study PC 3 and PC 5) are geologically more significant than earlier major components, PC 1 and PC 2 herein. The earlier two major components which comprise 96% of the total information of the data set, mainly represent reflectance of vegetation and topographic effects, while though the rest represent 3% of the total information which statistically indicates the information unstable, geological significance of PC3 and PC5 in the study implies that application of the technique in more favorable areas should lead to much better results.

Assessment of CO2 Emissions of Vehicles in Highway Sections Using Principal Component Analysis (주성분분석을 이용한 간선도로 구간 별 차량 당 CO2 다량 배출구간 평가)

  • Lee, Yoon Seok;Kim, Da Ye;Oh, Heung Un
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1981-1987
    • /
    • 2013
  • $CO_2$ emissions of vehicles vary with vehicle's speeds. In addition, the speeds vary with road type, location, time and traffic volume. In this paper, the section in which a large quantity of $CO_2$ emissions per vehicle is exhausted is determined and analyzed with principal component analysis(PCA). In results of analysis, the principal components analysis were divided into two principal components. It had been identified that the main component was the time zone one which is able to explain each components' role. The first principal component could explain the role of a major component on $CO_2$ emissions per vehicle in the early morning and afternoon hour, respectively. The second principal component could explain the role of the component on $CO_2$ emissions per vehicle in the morning and afternoon peak hours, respectively. Therefore, the section in which a large quantity of $CO_2$ emissions per vehicle could be deterimined by PCA scores.

HisCoM-PCA: software for hierarchical structural component analysis for pathway analysis based using principal component analysis

  • Jiang, Nan;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.11.1-11.3
    • /
    • 2020
  • In genome-wide association studies, pathway-based analysis has been widely performed to enhance interpretation of single-nucleotide polymorphism association results. We proposed a novel method of hierarchical structural component model (HisCoM) for pathway analysis of common variants (HisCoM for pathway analysis of common variants [HisCoM-PCA]) which was used to identify pathways associated with traits. HisCoM-PCA is based on principal component analysis (PCA) for dimensional reduction of single nucleotide polymorphisms in each gene, and the HisCoM for pathway analysis. In this study, we developed a HisCoM-PCA software for the hierarchical pathway analysis of common variants. HisCoM-PCA software has several features. Various principle component scores selection criteria in PCA step can be specified by users who want to summarize common variants at each gene-level by different threshold values. In addition, multiple public pathway databases and customized pathway information can be used to perform pathway analysis. We expect that HisCoM-PCA software will be useful for users to perform powerful pathway analysis.

Varietal Classification by Multivariate Analysis on Quantitative Traits in Pecan

  • Shin, Dong-Young;Nou, Ill-Sup
    • Plant Resources
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 1999
  • Twenty two varieties of pecan including wild types were classified based on 6 characters measured by principal component analysis score distance. The results are summarized as fellow. Twenty two varieties were classified into 5 groups based in PCA score distance. Five groups were distinctly characterized by many morphological characters. Total variation could be explained by 51%, 95%, 99% with first, third and fifth principal components respectively. Varimax rotation of the factor loading of the first factors indicated that the first component was highly loaded with leaf characters, the second component with fruit characters, but fruit length was negative loaded. The second, the third and the fourths groups of cultivars had very close genetic parentage similarity.

  • PDF