• Title/Summary/Keyword: Primorye

Search Result 10, Processing Time 0.021 seconds

Comparative floristic diversity of Southwest Primorye and neighboring areas of the Russian Far East

  • Kozhevnikov, Andrey Evhenijevicz;Kozhevnikova, Zoya Vitalijevna;Lee, Byoung Yoon;Kwak, Myounghai
    • Journal of Species Research
    • /
    • v.6 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • Southwest Primorye is located in the southern most part of the Russian Far East. The flora of this area is one of the most thoroughly studied and contains 1,530 species of vascular plants, belonging to 622 genera and 154 families, representing 55.6% of the flora of the Primorsky Territory. The flora native to Southwest Primorye encompasses 1,356 species from 547 genera and 148 families. Adventitious plants are represented by 174 species from 127 genera and 37 families. Among other areas of the Russian Far East, only Southwest Primorye has flora in common with the Korean Peninsula, which contains plant species in the subtropical and tropical latitudes: Mitrasacme indica Wight, Halosciastrum melanotilingia [Boissieu] M. Pimen. et V. Tichomirov, Streptolirion volubile Edgew., Lipocarpha microcephala [R. Br.] Kunth, Pueraria lobata [Willd.] Ohwi, Belamcanda chinensis [L.] DC., Zoysia japonica Steud., Deinostema violacea [Maxim.] Yamazaki and Parthenocissus tricuspidata [Siebold et Zucc.] Planch. Most of the flora is represented by the species restricted to Southwest Primorye (seven endemic species) or the Korean Peninsula (seven hemiendemic species). A total of 50.2% of the 10 largest families are nemoral (preboreal) floras, located in the transitional zone of the boreal and nemoral floras. In terms of the structure of the ranked taxonomic spectrum of the largest families, the flora of Southwest Primorye is more similar to that of Northeast China with influence of the Korean flora.

Ginseng Conservation Program in Russian Primorye:Genetic Structure of Wild and Cultivated Populations

  • Zhuravlev, Yu.N.;Koren, O.G.;Reunova, G.D.;Artyukova, E.V.;Kozyrenko, M.M.;Muzarok, T.I.;Kats, I.L.
    • Journal of Ginseng Research
    • /
    • v.28 no.1
    • /
    • pp.60-66
    • /
    • 2004
  • “The Regional complex long-term program of restoration (reintroduction) of Primoryes ginseng population up to 2005” elaborated by Primorye governor administration, Regional Committee of Natural Resources and Russian Academy of Sciences operates in Russian Primorye. The Institute of Biology and Soil Science (IBSS) provides the scientific implementation of the program including the genetic analysis of extant ginseng populations, plant reproduction and off-spring identification. According to our investigations, the genetic resource of P. ginseng in Primorye is represented by three populations of wild-growing ginseng and a few pritate plantations. The results obtained by RAPD allowed concluding that the resource is dispersed among the wild and cultivated ginseng sub-populations in such a way that each of sub-populations studied has to be represented as a stock material to maintain species genetic variability. The allozyme analyses also showed that the small sub-populations of wild ginseng are characterized by unique genetic diversity and, therefore, they all need to be represented in reintroduction centers. Additionally the allozyme analysis discovered that the Blue Mountain and Khasan populations possess the most genetic diversity. So, at least one more reproductive ginseng unit has to be created besides two already existing reintroduction centers representing the Sikhote-Alin and the Blue Mountain populations.

Ginseng Conservation Program in Russian Primorye: Genetic Structure of Natural and Cultivated Populations

  • Yu.N. Zhuravlev;O.G. Koren;G.D. Reunova;E.V Artyukova;M.M. Kozyrenko;T.I. Muzarok;I.L. Kats
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.509-521
    • /
    • 2002
  • 'The Regional complex long-term program of restoration (reintroduction) of Primoryes ginseng population up to 2005' elaborated by Primorye governor administration, Regional Committee of Natural Resources and Russian Academy of Sciences operates in Russian Primorye. The Institute of Biology and Soil Science (IBSS) provides the scientific implementation of this program including the genetic analysis of extant ginseng populations, plant reproduction and offspring identification. According to our investigations, the genetic resource of P. ginseng in Primorye is represented by three populations of wild-growing ginseng and a few private plantations. The results obtained by RAPD allowed concluding that this resource is dispersed among the wild and cultivated ginseng sub-populations in such a way that each of sub-populations studied has to be represented in living plant collection as a stock material to maintain species genetic variability. The allozyme analyses also showed that the small sub-populations of natural ginseng are characterized by unique genetic diversity and, therefore, they all need to be represented in reintroduction centers. Additionally the allozyme analysis discovered that the Blue Mountain and Khasan populations possess the most genetic diversity. So, at least one more reproductive ginseng unit has to be created besides two already existing reintroduction centers representing the Sikhote-Alin and the Blue Mountain populations.

  • PDF

Ichthyofaunistic Biogeography of the East Sea: Comparison between Benthic and Pelagic Zonalities

  • Kafanov, Alexander I.;Volvenko, Igor V.;Pitruk, Dmitry L.
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.35-49
    • /
    • 2001
  • An ichthyofauna analysis of the East Sea using quantitative investigation procedures for latitudinal variations of the species richness and clustering of the species list is presented to illustrate the application of the adopted geographical scaling (less than 1:10,000,000) which provides a principal opportunity for common benthic and pelagic biogeographical zonation. The distribution of both pelagic and benthic marine fish biota at a scale of biosphere (or its major sections) was highly influenced by spatial nonuniformity of hydrological structure associated with the various water circulations and frontal zones. Following zoogeographical zonations were established for the East Sea: Osaka, East Korea, Primorye, North Primorye, Northern East Sea, Uetsu, Tsugaru, Soya and West Sakhalin.

  • PDF

Chronology and environment of the Palaeolithic and Neolithic cultures on the southern Russian Far East

  • Kuzmin, Yaroslav V.
    • The Korean Journal of Quaternary Research
    • /
    • v.16 no.2
    • /
    • pp.39-56
    • /
    • 2002
  • The results of geoarchaeological studies of the prehistoric cultural complexes on the Russian Far East (Primorye, or Maritime Province; the Amur River basin; and Sakhalin Island) are presented. Upper Palaeolithic sites are dated to ca. 40,000-10,500 B.P. They existed during the mild climate of the Chernoruchie interstadial (ca. 40,000-21,000 B.P.); during harsh climate at the Last Glacial Maximum, ca. 20,000-18,000 B.P., in several places on the Russian Far East (Primorye, Amur River basin, and Sakhalin); and during climatic amelioration in the Late Glacial time, ca. 16,000-10,500 B.P. The earliest Neolithic sites, represented by Osipovka and Gromatukha cultures, existed at ca. 13,000-10,000 B.P. in the environment of coniferous forests with admixture of broadleaved taxa. Since ca. 8000 B.P., Neolithic cultures appeared in all of the Russian Far East. They existed until ca. 3000 B.P., first during the Holocene Climatic Optimum, ca. 8000-5000 B.P., in the environment of coniferous-broadleaved forests, and later, at ca. 5000-3000 B.P., in the environment of birch-oak and coniferous forests.

  • PDF

Relationship between Spring Bloom and Sea Ice in the Northern East Sea

  • Park, Kyung-Ae;Choi, Hwa-Jeong
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.134-134
    • /
    • 2010
  • Sea ices at the Tatarskiy Straitin the East/Japan Sea appear from November to April. Cold and fresh water, melted from the sea ices, may contain nutrients which are indispensable to spring bloom of phytoplankton and may provide a preferable condition to the spring bloom through changes in vertical structure of water column and stratification. Relation between the spring bloom along the Primorye coast and sea ices in the Tatarskiy Strait were investigated using multi-satellite multi-sensor data; ten-year SeaWiFS chlorophyll-a concentration data and PAR data, sea surface temperatures from NOAA/AVHRR, sea ice concentration and near-surface wind speed data from DMSP/SSMI, near-surface wind vectors from QuikSCAT, and others. We provided evidences of southwestward flowing cold water masses from sea ice and its relation of chlorophyll-a concentration. This study showed that year-to-year variations of chlorophyll-a concentration in spring were positively correlated with those of sea ice concentrations at the Tatarskiy Strait.

  • PDF

Status of Naming the East Sea in International Scientific Journals (국제 학술지에 발표된 연구 논문에서 동해의 표기 현황)

  • Kang, Dong-Jin;Lim, Byung-Ho;Chang, So-Young;Kim, Yun-Bae;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.133-156
    • /
    • 2009
  • We have named the sea surrounded by the Korean Peninsula, Primorye of Russia, and Japanese Islands as the East Sea. Historically this region has been variously named the East Sea, Chosun Sea, and, more recently, Japan Sea and Sea of Japan. Since the scientific research papers can play important roles on the naming the sea, the status of naming the East Sea in international scientific journals was investigated. Among 472 papers in 46 international journals that we assessed, Japan Sea (or Sea of Japan) was used in 322 papers (68.2%), East Sea was used in 21 papers (4.4%), and parallel usage of East Sea and Japan Sea accounted for 27.3% (129 papers). In all scientific papers before the early 1980s, East Sea was not used. Since the first parallel usage of East Sea and Japan Sea in 1985, these designations has been increasingly used. After 2004, the parallel usage has replaced the single designation of Japan Sea.

Chromosomal study of the lenoks, Brachymystax (Salmoniformes, Salmonidae) from the South of the Russian Far East

  • Kartavtseva, I.V.;Ginatulina, L.K.;Nemkova, G.A.;Shedko, S.V.
    • Journal of Species Research
    • /
    • v.2 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • An investigation of the karyotypes of two species of the genus Brachymystax (B. lenok and B. tumensis) has been done for the Russia Primorye rivers running to the East Sea basin, and others belonging to Amur basin. Based on the analysis of two species chromosome characteristics, combined with original and literary data, four cytotypes have been described. One of these cytotypes (Cytotype I: 2n=90, NF=110-118) was the most common. This common cytotype belongs to B. tumensis from the rivers of the East Sea basin and B. lenok from the rivers of the Amur basin, i.e. extends to the zones of allopatry. In the rivers of the Amur river basin, in the zone of the sympatric habitat of two species, each taxon has karyotypes with different chromosome numbers, B. tumensis (2n=92) and B. lenok (2n=90). Because of the ability to determine a number of the chromosome arms for these two species, additional cytotype have been identified for B. tumensis: Cytotype II with 2n=92, NF=110-124 in the rivers basins of the Yellow sea and Amur river and for B. lenok three cytotypes: Cytotype I: 2n=90, NF=110 in the Amur river basin; Cytotype III with 2n=90, NF=106-126 in the Amur river basin and Cytotypes IV with 2n=92, NF=102 in the Baikal lake.

Seasonal sea Level oscillations in the East Sea (Sea of Japan) (동해 해수면의 계절적인 변동에 대하여)

  • OH, IM SANG;RABINOVICH, ALEXANDER B.;PARK, MYOUNG SOOK;MANSUROV, ROALD N.
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • The monthly mean sea levels at 48 stations located at the East and Yellow Seas coasts of Korea, Russia and Japan are processed to investigate seasonal sea level variations. The strong seasonal variations are found to be at the west coast of Korea (42.1 cm in Kunsan), in the region of the Korea strait and near the southern part of Primorye (30-33 cm); the weak ones near the southwestern coast of the Sakhalin Island (10-12 cm). Practically for the whole study area except the southwest Sakhalin, the general picture of the seasonal sea level changes is alike: the mean sea level rises in summer-autumn and falls in winter-spring. The spectral analysis of the records also shows that the seasonal oscillations strongly dominate in the sea level variations, more than 80% or total energy in the southern part of the investigated region and 50-70% in the northern part relate to these oscillations. The annal peak significantly prevails in spectra of the monthly sea levels for the majority of stations, the semiannual peak is also well manifested, but the seasonal peaks of higher order (corresponding to the periods of four and three months) reveal only at some records. The maximal amplitudes of annual component by a least square method are found at the Yellow Sea coast of Korea (20-21 cm) and also near the Japanese coast of the korea Strait (19-19 cm). The semiannual component has the maximal amplitudes (3-4 cm) near the south and southwestern coasts of the Sakhalin Island. The annual range of the sea levels is much weaker here than in the other regions, the relative investment of the seasonal oscillations in total energetic budget is only 35-40%, annual ($A_1$) and semiannual ($A_2$) components have nearly the same amplitude (seasonal factor $F=A_1/A_2=0.9-1.2$). On the basis of the present examination on sea level changes together with the results of Tomizawa et. al.(1984) the whole investigated area may be divided into 10 subregions, 2 of them are related to the Yellow Sea and Western part of the Korea Strait (Y1, Y2), the other ones (E1-E8) to the East Sea.

  • PDF

Non-Agricultural Occupations of Korean Immigrants at the Russian Far East (러시아 극동지역 한인이주민의 직업에 대한 연구: 비농업직(非農業職)을 중심으로)

  • 이채문
    • Korea journal of population studies
    • /
    • v.23 no.2
    • /
    • pp.39-77
    • /
    • 2000
  • The paper examines non-agricultural occupations of Korean immigrants in the Russian Far East from 1860s to 1930s. First of all, theoretical perspectives regarding immigrants\` job selection and positions in the labor market such as cultural theory, segmented labor market theory, human capital theory, and ethnic enclave theory were reviewed and then how these theories can be applied to various jobs of Korean immigrants including mining, fishing, small business, service, and miscellaneous jobs was studied. Next. this article points out that those theories cannot explain both supply and demand sides of migration simultaneously, suggesting the need to integrate two sides of migration. In order to fill out this gap in the literature, this paper suggests the integrative approach which combines supply side and demand side of migration. According to this model, several factors in the non-agricultural jabs which were affecting Korean immigration in the Russian Far East. were identified and discussed in relation with existing theoretical perspectives. Finally this paper concludes that, in order to understand Koran migration in the Russian Far East properly, we have to take into consideration simultaneously both supply-sided factors of immigration including farming-oriented characteristics of Koreans, Korean socio-economic problems preceding immigration, and self-dependent tendencies of Korean immigrants and demand-side factor like the Russian migration policy to the immigrants and various regional situations in the Russian Far East.

  • PDF