• Title/Summary/Keyword: Primordial-primary follicle transition

Search Result 11, Processing Time 0.022 seconds

Identification of Differential Gene Expression during Primordial to Primary Follicle Transition in Mouse Ovaries by ACP technology

  • Jean, Eun-Hyun;Yoon, Se-Jin;Park, Chang-Eun;Cha, Kwang-Yul;Kim, Nam-Hyung;Lee, Kyung-Ah
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.75-75
    • /
    • 2003
  • Transition of the resting primordial follicle to the growing primary follicle is a critical process for female reproduction, but its mechanism is poorly understood. The present study was conducted to investigate gene expression profile at the primordial-primary follicle transition process. We isolated total RNA of female mouse ovary at day1 (contains only primordial follicles) and day5 (contains primordial and primary follicles) and synthesized cDNA using annealing control primers (ACP; Seegene, Inc., Seoul, Korea). ACP provides annealing specificity and sensitivity to the template and allows to identify only authentic differentially expressed genes (DEGs). We used total 80 ACPs for PCR, observed PCR products on 2% agarose gel, cloned 42 DEGs using TOPO TA cloning vector, sequenced, and analyzed by BLAST search. Sequences of 34 clones significantly matched database entries while 4 clones were novel and 4 clones were EST. Two of 34 genes were specifically expressed only in day 5 ovaries (Sui1-rs1, Apg3p/Aut1p-like), and rest of 32 genes were expressed in both stages but were differential in amount. Differential expression was confirmed using semiquantitative RT-PCR, and there was no false positive. Anx11 and Pepp2-pending were highly expressed genes in day1-, while BPOZ, Ches1, Kcmf1, NHE3, Nid2, Ninj1, SENP3 and Survivin were highly expressed genes in day5-ovary. List of genes would provide insight for further study of mechanism regulating primordial-primary follicle transition.

  • PDF

Analysis of the Gene Expression by Laser Capture Microdissection(II) : Differential Gene Expression between Primordial and Primary Follicles (Laser Capture Microdissection을 이용한 유전자 발현 연구(II) : 원시난포와 1차난포 유전자 발현의 차이에 대한 분석)

  • 박창은;고정재;이숙환;차광렬;김격진;이경아
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The present study was conducted to elucidate genes involved in the primordial-primary follicular transition. By using suppression subtractive hybridization, day1- and day5-subtracted cDNA libraries were obtained with the forward and reverse subtraction method, respectively. In toto, 357 clones were sequenced and analyzed by BLAST and RIKEN program. Sequences of 330 clones significantly matched database entries while 27 clones were novel. Forty-two and 47 genes with known functions were different between day1 and day5 ovaries. Four genes, GDF8, lats2, septin2, and wee1, from the day1 subtracted cDNA library, and 6 genes, HSP84, laminin2, MATER, MTi7, PTP, and wrn, from day5-subtracted cDNA library were chosen, and their differential expression was evaluated using RNAs from whole ovaries as well as captured primordial and primary follicles by laser captured microdissection. Results from the present study would provide insight for the future study on the mechanisms involved in primordial-primary follicle transition in the mouse in addition to the human ovary.

  • PDF

Analysis of Genes Expressed in Mouse Ovaries of Early Developmental Stages (초기발달 단계의 생쥐 난소에서 발현하는 유전자에 관한 연구)

  • Jeon Eun-Hyun;Yoon Se-Jin;Cha Kwang-Yul;Kim Nam-Hyung;Lee Kyung-Ah
    • Development and Reproduction
    • /
    • v.7 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • The present study was conducted to investigate gene expression profile of mouse ovaries during the primordial-primary follicle transition. We isolated total RNA from mouse ovaries at day1(contains only primordial follicles) and day5(contains both primordial and primary follicles) and synthesized cDNA using annealing control primers(ACP, Seegene, Inc., Seoul, Korea). Using 80 different ACPs for PCR, we cloned, sequenced, and analyzed identities of 41 differentially expressed genes(DEGs). According to BLAST analysis, sequences of 33 clones significantly matched database entries, 4 clones were novel, and 4 clones were ESTs. We selected 8 DEGs with interesting functions, Anx11 and Pepp2-Pending highly expressed in day1 ovary, while Apg3/Autlp-like, BPOZ, Ches1, Kcmf1, NHE3, Nid2, Ninj1, SENP3, Suil-rsl, and TIAP/m-survivin highly expressed in days ovary, and confirmed their different expression between day1 ovaries and days ovaries using semi-quantitative RT-PCR. There was no false positive result. Using in situ hybridization, we found that almost all of genes studied were expressed in the oocyte from primordial follicle stage but expression decreased from primary follicle stage. Meanwhile their expression was increased in cuboidal granulosa cells. Different expression of BPOZ and TIAP/m-survivin between primordial and primary follicles was confirmed by using laser capture microdissection followed by real-time PCR BPOZ and TIAP/m-survivin expressed 4.5 and 3.4 fold higher in primary than primordial follicles, respectively. List of genes obtained from the present study will provide insights for the study of mechanism regulating primordial-primary follicle transition.

  • PDF

The Expression of Solute carrier family members Genes in Mouse Ovarian Developments (생쥐의 난소 발달과정에서 Solute carrier family 유전자들의 발현양상)

  • O, Lee-Gyun;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.40-47
    • /
    • 2017
  • Granulosa cells, which surround the oocyte within the ovarian follicle, play an essential role in creating conditions required for the development of oocytes and follicles. The solute carrier family (SLC) is comprised of influx transporters of steroidal hormones, various drugs, and several other substrates. The differential expression of selected DEGs was confirmed using in situ hybridization analysis. SLC23A3 and SLC39A10 were highly expressed in the ovary. The SLC39A10 gene was expressed in the primordial follicle stage, but SLC23A3 was expressed in the growing follicle stage. Contrastingly, the expression of SLC23A3 was increased in granulosa cells at the growing follicle stage. The differential expressions of SLC23A3 and SLC39A10 between the primordial and primary follicles were additionally confirmed by using follicle isolations. The gene expression profile from the present study may provide insight for future studies on the mechanism(s) involved in primordial-primary follicular transition and suggestions to promote follicular development in ovarian dysfunction.

Identification of Genes Involved in Primordial-primary Follicle Transition by Suppression Subtractive Hybridization

  • Park, Chang-Eun;Yoon, Se-Jin;Jeon, Eun-Hyun;Kim, Young-Hoon;Lee, Sook-Hwan;Lee, Kyung-Ah
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.98-98
    • /
    • 2002
  • Recruitment of primordial follicles(PMF) is crucial for female fertility. however, factors and mechanisms that regulate this process is poorly understood. The present study was conducted to obtain an inclusive view of the gene expression and to identify novel factors and their pathways of regulating PMF arrest and/or growth initiation. Ovaries from one-day neonatal(consists of oocyte and PMF) and five-day old(consists of PMF and primary follicles, PRIF) mice were collected, either total RNA or mRNA was isolated, and suppression subtractive hybridization(SSH) was used to isolate and clone genes that differentially expressed in day 1 and day 5 ovaries. Confirmation that some of these genes are differentially expressed in PMF and/or in PRIF was accomplished by using laser captured microdissection(LCM), RT-PCR. in situ hybridization(ISH) and/or immunohistochemistry(IHC). In toto, 357 clones were sequenced and analyzed by BLAST and RIKEN program. Sequences of 330 clones significantly matched database entries while 27 clones were novel. Forty-two and 47 different genes were identified as differentially expressed in day 1 and day 5 ovaries, respectively, while 7 genes were expressed in both stages of ovaries. Day 5-subtracted library included several genes known as markers far growing follicles, such as ZP2, MATER, and fetuin. Among the genes with assigned functions, 23.8% was associated with cell cycle/apoptosis regulation, 7.1% with cellular structure, 11.9% with metabolism, 26.2% with signal transduction, and 31.0% with gene/protein expression in day 1; while 10.6%, 17.0%, 23.5%, 25.5%, and 23.4% in day 5, respectively. Genes such as GDF-8, Lats2, Septin2, and Weel were the highly expressed genes in PMF, while HSP84, Laminin2, MATER, MTi7, PTP, and Wrn were highly expressed genes in PRIF. We have successfully discovered list of genes expressed in day 1 and day 5 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRIF. Gene expression profile from the present study would provide insight for the future study on the mechanism(s) involved in primordial-primary follicular transition. This work was Supported by Korean Health 21 RND Project, Ministry of Health and Welfare, Korea (01-PJ10-PG6-01GN13-0002).

  • PDF

Expression of mRNAs and Proteins of Cyclin A and LATS Genes in Ovary (Cyclin A와 LATS 유전자들의 난소 내 mRNA 및 단백질 발현에 관한 연구)

  • Park, Chang-Eun;Kim, Dae-Jung;Hong, Sung-No
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.40 no.1
    • /
    • pp.31-40
    • /
    • 2008
  • Despite of the importance of the primordial follicle (PMF) recruitment, factors and mechanisms for process are poorly understood. To evaluate expression and role of the follicular transition from PMF to PMF/primary follicles (PMIF) in the present study, we evaluated expression of lats1, lats2, cyclin A1, and cyclin A2 mRNA and protein, and elucidated and role of lats1-cyclin A in the follicular transition from PMF to PRIF. To analysis of differential expression in PMF and PMIF, each stage follicles were collected by day1 and day5 of immuno-compromised rats (ICR) and analyzed by real-time PCR for the genes. For localization of mRNAs and proteins of the genes, in situ hybridization and immunohistochemistry were performed. We confirmed that the lats1, lats2, cyclin A1, and cyclin A2 mRNA were more expressed in PMF than PMIF. Localization of the four genes expression were observed in nuclei of oocytes from the arrested primordial, and in the surrounding granulosa cells of the growing follicles. The mRNA expressions were gradually decreased with follicular development. From immunohistochemistry studies, Cyclin A1 protein expression were observed in oocyte cytoplasmas of early stage follicles, while observed in granulose cells and oocyte nucleoli during growing follicles. This study suggested that the presence of lats gene family might perform negatively regulation of cell proliferation by modulation of the CDC2/Cyclin A complex activity. lats-cyclin A genes in oocytes of the early stage follicles might play a role in the meiotic cell cycle arrest of the primary oocytes at the primordial follicle stage as well as the follicular growth.

  • PDF

Expression of Membrane Fusion Related Genes in Mouse Ovary (마우스 난소에서 막융합 관련 유전자의 발현)

  • Jung, Bok-Hae;Sung, Hyun-Ho;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • Granulosa cells surround the oocyte within the ovarian follicle and play an essential role in creating conditions required for oocyte as well as follicular development. The current study was conducted to examine the gene expression profile of mouse ovaries during the primordial to primary follicle transition process. Total RNAs from mouse ovaries on day 5 and day 12 were synthesized cDNA using annealing control primers. The DEGs were cloned and their identities were analyzed by BLAST search. The Plekha5 and Anxa11 were highly expressed in primary follicle stage. By contrast, their expression was increased in granulosa cells at the primary follicle stage. We have successfully discovered a list of genes expressed in day 5 and day 12 ovaries and confirmed that some of them are differentially expressed in PMF and/or PRI. This is a spatial-temporal regulatory mechanism on the ovarian folliculogenesis through membrane fusion. The gene expression profile from the current study would provide insight for future study on the mechanism(s) involved in primordial-primary follicular transition. This will provide information for identification of the mechanism of ovarian dysfunction.