• Title/Summary/Keyword: Primitive geometry

Search Result 26, Processing Time 0.026 seconds

Ship Outfitting Design Data Exchange between CAD Systems Using Different Primitive Set (서로 다른 프리미티브 집합을 사용하는 CAD 시스템 사이에 선박 의장 설계 데이터의 교환)

  • Lee, Seunghoon;Han, Soonhung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.3
    • /
    • pp.234-242
    • /
    • 2013
  • Different CAD systems are used in ship outfitting design on different usage and purpose. Therefore, data exchanges between CAD systems are required from different formats. For data exchange, boundary representation standard formats such as IGES and ISO 10303 (STEP) are widely used. However, they present only B-rep representation. Because of different CAD systems have their own geometry format, data exchanges with design intend are difficult. Especially, Tribon and PDMS use primitives for express their geometry in ship outfitting design. However, Tribon primitives are represented their parameter by values that are non-parametric. Therefore, data size of catalogue library is bigger than different CAD system using parametric primitive representation. And that system has difficulty on data reprocessing. To solve that problem, we discuss about shape DB which contains design parameters of primitive for exchange Tribon primitives. And geometry data exchange between Tribon and Shape Database that defines based on PDMS scheme are specified using primitive mapping that can represent design intend.

Automated Forming Sequence Design System for Multistage Cold Forging Parts (다단 냉간단조품의 자동공정설계시스템)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

Preliminary programming for librarization of Haptic Primitives based on constructive solid geometry and god-object

  • Jin, Do-Hyung;Kyung, Ki-Uk;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1093-1097
    • /
    • 2004
  • We propose 'the haptic primitive' for haptic rendering without the need to solve complicated parametric equations. To develop 'the haptic primitive', we adopted "the God-Object Method" as a haptic rendering algorithm and applied 'Constructive Solid Geometry' to manage haptic objects. Besides being used in the 'ghost library' of $PHANToMTM^{TM}$ our method can be used as a basic component for developing tools and libraries that aim to simplify haptic modeling. It can also be applied to tactile display modules and temporal display modules. Ultimately it can be developed into a one-stop haptic modeling tool that enables the user to more conveniently create a tangible CAD systems or a tangible e-ommerce system.

  • PDF

The Design and Implementation of Implicit Object Classes for Geometric Modeling System (형상 모델링을 위한 음함수 객체의 설계 및 구현)

  • Park, Sang-Kun;Chung, Seong-Youb
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.187-199
    • /
    • 2008
  • This paper describes a C++ class hierarchy of implicit objects for geometry modeling and processing. This class structure provides a software kernel for integrating many various models and methods found in current implicit modeling areas. The software kernel includes primitive objects playing a role of unit element in creating a complex shape, and operator objects used to construct more complex shape of implicit object formed with the primitive objects and other operators. In this paper, class descriptions of these objects are provided to better understand the details of the algorithm or implementation, and its instance examples to show the capabilities of the object classes for constructive shape geometry. In addition, solid modeling system shown as an application example demonstrates that the proposed implicit object classes allow us to carry out modern solid modeling techniques, which means they have the capabilities to extend to various applications.

Effect of Pore Geometry on Gas Adsorption: Grand Canonical Monte Carlo Simulation Studies

  • Lee, Eon-Ji;Chang, Rak-Woo;Han, Ji-Hyung;Chung, Taek-Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.901-905
    • /
    • 2012
  • In this study, we investigated the pure geometrical effect of porous materials in gas adsorption using the grand canonical Monte Carlo simulations of primitive gas-pore models with various pore geometries such as planar, cylindrical, and random pore geometries. Although the model does not possess atomistic level details of porous materials, our simulation results provided many insightful information in the effect of pore geometry on the adsorption behavior of gas molecules. First, the surface curvature of porous materials plays a significant role in the amount of adsorbed gas molecules: the concave surface such as in cylindrical pores induces more attraction between gas molecules and pore, which results in the enhanced gas adsorption. On the contrary, the convex surface of random pores gives the opposite effect. Second, this geometrical effect shows a nonmonotonic dependence on the gas-pore interaction strength and length. Third, as the external gas pressure is increased, the change in the gas adsorption due to pore geometry is reduced. Finally, the pore geometry also affects the collision dynamics of gas molecules. Since our model is based on primitive description of fluid molecules, our conclusion can be applied to any fluidic systems including reactant-electrode systems.

Computer-Aided Process Planning System of Cold Forging and its Verification by F.E. Simulation (냉간단조 공정설계 시스템과 유한요소해석에 의한 검증)

  • Lee, E.H.;Kim, D.J.;Park, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-52
    • /
    • 1996
  • This paper describes interactive computer procedures for design the forming sequences in cold forging. This system is implemented on the personal computer and its environment is a commercial AutoCAD system. The programming language. AutoLISP, was used for the configuration of the system. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the part is a key in process planning. To recognize the part section geometry, the section entity representation, the section coordinate-redius representation and the section primitive geometru were adopted. This system includes six major modules such as input module, forging design module, forming sequence design module, die design module, FEM verification module and output module which are used independently or in all. The sequence drawing wigh all dimensions, which includes the dimensional tolerances and the proper sequence of operations, can generate under the environment of AutoCAD. The acceptable forming sequences can be verified further, using the FE simulation.

  • PDF

An Integrated Process Planning System and Finite Element Simulation for Multistage Cold Forging (유한요소해석을 통합한 다단 냉간단조 공정설계시스템)

  • 최재찬;김병민;이언호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 1995
  • An integrated process planning system can determine desirable operation sequences even if they have little experience in the design of multistage cold forging process. This system is composed of seven major modules such as input module, pre-design module, formability check module, forming sequence design module, forming analysis module, FEM verification module, and output module which are used independently or in all. The forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics(diameter, height, and radius), the part geometry is expressed by a list of the primitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the dimensional tolerances and the proper sequence of operations for parts, is generated under the environment of AutoCAD. Several forming sequences generated by the planning system can be checked by the forming analysis module. The acceptable forming sequences can be verified further, using FE simulation.

  • PDF

Geometry-to-BIM Mapping Rule Definition for Building Plane BIM object (건축물 평면 형상에 대한 형상-to-BIM 맵핑 규칙 정의)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.236-242
    • /
    • 2019
  • Recently, scanning projects have been carried out in various construction and construction fields for maintenance purposes. The point cloud generated by the scan results is composed of a number of points representing the object to be scanned. The process of extracting the necessary information, including dimensions, from such scan data is called paradox. The reverse engineering process of modeling a point cloud as BIM involves considerable manual work. Owing to the time-consuming reverse engineering nature of the work, the costs increase exponentially when rework requests are made, such as design changes. Reverse engineering automation technology can help improve these problems. On the other hand, the reverse design product is variable depending on the use, and the kind and detail level of the product may be different. This paper proposes the G2BM (Geometry-to-BIM mapping) rule definition method that automatically maps a BIM object from a primitive geometry to a BIM object. G2BM proposes a process definition and a customization method for reverse engineering BIM objects that consider the use case variability.

Automatic Process Planning Design and Finite Element Method for The Multistage Cold Forged Parts (다단 냉간단조품의 자동공정설계시스템과 유한요소법)

  • 최재찬;김병민;이언호;김동진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • The automatic forming sequence design system can determine desirable operation sequences even if they have little experience in the design of cold forging process. This system is proposed,which generates forming sequence plans for the multistage cold forging of zxisymmetrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning processes. Forming sequence for the part can be determined by means of primitive geometries such as cylinder,cone, convex, and concave. By utilizing this geometrical characteristics(diameter,height, and radius),the product geometry is expressed by a list of the pnmitive geometries. Accordingly, the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. The preliminary choice of some feasible forming sequences can verify by using the finite element simulation.

  • PDF

The Primitive Representation in Speech Perception: Phoneme or Distinctive Features (말지각의 기초표상: 음소 또는 변별자질)

  • Bae, Moon-Jung
    • Phonetics and Speech Sciences
    • /
    • v.5 no.4
    • /
    • pp.157-169
    • /
    • 2013
  • Using a target detection task, this study compared the processing automaticity of phonemes and features in spoken syllable stimuli to determine the primitive representation in speech perception, phoneme or distinctive feature. For this, we modified the visual search task(Treisman et al., 1992) developed to investigate the processing of visual features(ex. color, shape or their conjunction) for auditory stimuli. In our task, the distinctive features(ex. aspiration or coronal) corresponded to visual primitive features(ex. color and shape), and the phonemes(ex. /$t^h$/) to visual conjunctive features(ex. colored shapes). The automaticity is measured by the set size effect that was the increasing amount of reaction time when the number of distracters increased. Three experiments were conducted. The laryngeal features(experiment 1), the manner features(experiment 2), and the place features(experiment 3) were compared with phonemes. The results showed that the distinctive features are consistently processed faster and automatically than the phonemes. Additionally there were differences in the processing automaticity among the classes of distinctive features. The laryngeal features are the most automatic, the manner features are moderately automatic and the place features are the least automatic. These results are consistent with the previous studies(Bae et al., 2002; Bae, 2010) that showed the perceptual hierarchy of distinctive features.