• 제목/요약/키워드: Prime cordial labeling

검색결과 3건 처리시간 0.021초

On Prime Cordial Labeling of Graphs

  • Aljouiee, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.41-46
    • /
    • 2016
  • A graph G of order n has prime cordial labeling if its vertices can be assigned the distinct labels 1, $2{\cdots}$, n such that if each edge xy in G is assigned the label 1 in case the labels of x and y are relatively prime and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper, we give a complete characterization of complete graphs which are prime cordial and we give a prime cordial labeling of the closed helm ${\bar{H}}_n$, and present a new way of prime cordial labeling of $P^2_n$. Finally we make a correction of the proof of Theorem 2.5 in [12].

k-PRIME CORDIAL GRAPHS

  • PONRAJ, R.;SINGH, RAJPAL;KALA, R.;NARAYANAN, S. SATHISH
    • Journal of applied mathematics & informatics
    • /
    • 제34권3_4호
    • /
    • pp.227-237
    • /
    • 2016
  • In this paper we introduce a new graph labeling called k-prime cordial labeling. Let G be a (p, q) graph and 2 ≤ p ≤ k. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called a k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate the k-prime cordial labeling behavior of a star and we have proved that every graph is a subgraph of a k-prime cordial graph. Also we investigate the 3-prime cordial labeling behavior of path, cycle, complete graph, wheel, comb and some more standard graphs.

SOME 4-TOTAL PRIME CORDIAL LABELING OF GRAPHS

  • PONRAJ, R.;MARUTHAMANI, J.;KALA, R.
    • Journal of applied mathematics & informatics
    • /
    • 제37권1_2호
    • /
    • pp.149-156
    • /
    • 2019
  • Let G be a (p, q) graph. Let $f:V(G){\rightarrow}\{1,2,{\ldots},k\}$ be a map where $k{\in}{\mathbb{N}}$ and k > 1. For each edge uv, assign the label gcd(f(u), f(v)). f is called k-Total prime cordial labeling of G if ${\mid}t_f(i)-t_f(j){\mid}{\leq}1$, $i,j{\in}\{1,2,{\ldots},k\}$ where $t_f$(x) denotes the total number of vertices and the edges labelled with x. A graph with a k-total prime cordial labeling is called k-total prime cordial graph. In this paper we investigate the 4-total prime cordial labeling of some graphs.