• Title/Summary/Keyword: Primary windings

Search Result 108, Processing Time 0.027 seconds

Three-Phase Four-Wire Inverter Topology with Neutral Point Voltage Stable Module for Unbalanced Load Inhibition

  • Cai, Chunwei;An, Pufeng;Guo, Yuxing;Meng, Fangang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1315-1324
    • /
    • 2018
  • A novel three-phase four-wire inverter topology is presented in this paper. This topology is equipped with a special capacitor balance grid without magnetic saturation. In response to unbalanced load and unequal split DC-link capacitors problems, a qusi-full-bridge DC/DC topology is applied in the balance grid. By using a high-frequency transformer, the energy transfer within the two split dc-link capacitors is realized. The novel topology makes the voltage across two split dc-link capacitors balanced so that the neutral point voltage ripple is inhibited. Under the condition of a stable neutral point voltage, the three-phase four-wire inverter can be equivalent to three independent single phase inverters. As a result, the three-phase inverter can produce symmetrical voltage waves with an unbalanced load. To avoid forward transformer magnetic saturation, the voltages of the primary and secondary windings are controlled to reverse once during each switching period. Furthermore, an improved mode chosen operating principle for this novel topology is designed and analyzed in detail. The simulated results verified the feasibility of this topology and an experimental inverter has been built to test the power quality produced by this topology. Finally, simulation results verify that the novel topology can effectively improve the inhibition of an inverter with a three-phase unbalanced load while decreasing the value of the split capacitor.

Recovery Characteristics of SFCL According to the Turn's Variation (턴수 변화에 따른 초전도 전류제한기의 회복특성 분석)

  • Han, Tae-Hee;Cho, Yong-Sun;Park, Hyoung-Min;Nam, Guong-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Lim, Sung-Hun;Chung, Dong-Chul;Hwang, Jong-Sun;Choi, Myoung-Ho;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.184-185
    • /
    • 2006
  • The flux-lock type superconducting fault current limiter (SFCL) has the attractive characteristics that can adjust the current limiting level by the turns ratio between two coils. Since the recovery characteristics of a superconducting element m the flux-lock type SFCL were dependent on the turns ratio between two coils, the analysis for the recovery characteristics of this type SFCL together with the current limiting characteristic is necessary to apply it to power system. When the applied voltage and load impedance were same, the recovery time of the superconducting element was 0.32sec in case that the turn's ratio between the primary and secondary windings was 63:21. In the meantime, when the turn's ratio of secondary winding increased to 3 times, the recovery time became longer to 0.58sec.

  • PDF

B-H Loop Measurement of a High Tensile Steel Plate (사각판재형 강재의 자기특성측정)

  • Kim, Young-Hak;Kim, Ki-Chan;Shin, Kwang-Ho;Kim, Hwi-Seok;Yoon, Kwan-Seob;Yang, Chang-Seob
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.94-99
    • /
    • 2010
  • Minor B-H loop measurement for a rectangular high tensile steel was obtained by using Labview. A ferrite cores of high permeance with primary and secondary windings on the steel plate were used to form a closed loop of magnetic flux. To compensate errors due to an extremely small gap between a pair of ferrite core, and between the ferrite core and the rectangular high tensile steel, quadratic function of least square method was used. Also a 3D FEM magnetic analysis tool was used to measure H and B of the steel. B-H loop of the high tensile steel plate can be measured up to 520 A/m of a magnetic field and 0.15 T of a magnetic flux density.

Design of the 1.5kVA Class Wireless Power Transfer Device for Battery Charging of Integrated Power Control System in MSAP (군 이동기지국시스템(MSAP) 통합전원제어장치 배터리 충전용 1.5kVA급 무선전력전송기기의 설계)

  • Kim, Jin-Sung;Kim, Byung-Jun;Park, Hyeon-Jeong;Seo, Min-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • The Tactical Information and Communication Network system provides real-time multimedia services such as voice and data by utilizing the Mobile Subscriber Access Point. At this time, an external transmission path is constructed through the Low Capacity Trunk Radio and the High Capacity Trunk Radio system. The communication devices of each wireless transmission system are mounted on a tactical vehicle and a secondary battery is used to prevent a power interruption when the supply power to the tactical vehicle is transferred to the integrated power control device. In this paper, the basic design of the Wireless Power Transfer device for charging the battery of the integrated power control system of the mobile base station system using the Loading Distribution Method and checking the number of primary windings and the core material selection by the air gap through the Finite Elements Method.

A Study on the Optimal Design of Planar Flyback Transformers suitable for Small-size and Low-profile (소형화 및 슬림형에 적합한 평면 플라이백 변압기의 최적 설계에 관한 연구)

  • Na, Hae-Joong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.828-837
    • /
    • 2020
  • This paper presents the optimal design of planar flyback transformer suitable for small-size and low-profile of AC to DC adapter for 10W tablet. This paper also proposes the injection winding transformer of Hybrid and Drum types capable of the winding method of automatic type and the reduction of transformer size and leakage inductance(Lk) compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the injection winding transformer of Drum type proposed in this paper is constructed in a horizontal laying of its transformer to solve the connection problem of copper plate injection winding on the secondary side of the one of Hybrid type. The primary and secondary windings of the injection winding transformer of Hybrid and Drum types used the conventional winding and the copper plate injection winding, respectively. For the injection winding transformer of Hybrid and Drum types proposed in this paper, the optimal design of planar flyback transformer suitable for small-size and low-profile was carried out using Maxwell 2D and 3D tool.

Current Limiting Characteristics of Flux-Lock Type High-TC Superconducting Fault Current Limiter According to Fault Angles (사고각에 따른 자속구속형 전류제한기의 전류제한특성)

  • Park, Hyoung-Min;Lim, Sung-Hun;Cho, Yong-Sun;Park, Chung-Ryul;Han, Byoung-Sung;Choi, Hyo-Sang;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.12-14
    • /
    • 2004
  • We investigated current limiting characteristics of the flux-lock type high-Tc superconcting fault current limiter(HTSC-FCL) according to fault angles. The Flux-lock type HTSC-FCL consists of primary and the secondary copper coils that are wound in parallel each other through the iron core and YBCO thin flim. In this paper, the current limiting characteristics of the flux-lock type HTSC-FCL according to fault angles in case of the subtractive and additive polarity windings were compared and analyzed. From the results, the flux-lock type HTSC-FCL could limit more quickly fault current as the fault angles increased irrespective of the fault angles. On the other hand, the initial power burden of HTSC element after a fault happened increased as the fault angles increased. In addition, it was confirmed that the resistance of flux-lock type HTSC-FCL in case of subtractive polarity winding was more increased than that of additive polarity winding and that the peak current of fault current in case of subtractive polarity winding was larger than that of the additive polarity winding case.

  • PDF

Analysis on Fault Current Limiting Characteristics of a Flux-Lock Type HTSC Fault Current Limiter with Hysteresis Characteristic (히스테리시스 특성을 고려한 자속구속형 고온초전도 사고전류 제한기의 사고전류 제한특성 분석)

  • Lim, Sung-Hun;Choi, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.94-98
    • /
    • 2007
  • The fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) considering hysteresis characteristics of a flux-lock reactor, which is an essential component of the flux-lock type SFCL, were investigated. In the normal state, the hysteresis loss of iron core in the flux-lock type SFCL does not happen due to its winding's structure. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio between the primary and the secondary windings, the increase of the number of turns in the secondary winding of the flux-lock type SFCL made the fault current level increase. On the other hand, the saturation of iron core was prevented.

A Study on the Design of Flyback Transformer using Flat copper winding (평면 동판 권선을 이용한 Flyback 변압기 설계에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • This paper presents the optimal design of flyback transformer with the flat copper winding method of injection type suitable for the small-size and winding method of automatic type used in 90W DC to DC converter for LED-TV. This paper also proposes the flyback transformer with the flat copper winding method of injection type capable of the winding method of automatic type and the reduction of transformer size and enhanced uniformity in electrical characteristics compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the flat copper winding transformer of injection type proposed in this paper is constructed in a vertical winding method of its transformer to realize the winding method of automatic type. The primary and secondary windings of flyback transformer with the flat copper winding method of injection type used the conventional winding, triple insulated winding and the flat copper winding method of injection type, respectively. The optimal design of flyback transformer with the flat copper winding transformer of injection type proposed in this paper suitable for small-size and winding method of automatic type was carried out based on the simulation results using Maxwell 2D and 3D tool.