• Title/Summary/Keyword: Primary pump system

Search Result 79, Processing Time 0.027 seconds

Second Law Optimization of Water-to-Water Heat Pump System

  • Kim, Kyu-Hyung;Woo, Joung-Son;Lee, Se-Kyoun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.122-128
    • /
    • 2003
  • This paper presents a thermodynamic analysis of heat pump system using water as a heat source and heat sink. The primary object in this study is the optimization of exergetic efficiency. Two different systems, 2-stream and 1-stream system, are analyzed in detail. Mass flow ratio (the ratio of mass flow rate of water through evaporator to that through condenser) is identified as the most important parameter to be optimized. It is shown that there exists an optimum mass flow ratio to maximize exergetic efficiency. The variation of optimum exergetic efficiency of 2-stream system is quite small and the value lies between 0.2∼0.23 for the range of investigation in this study. However, far better performance can be obtained from 1-stream system. This means considerable irreversibilities are generated through condenser of the 2-stream system. The effects of adiabatic efficiency of compressor-motor unit on the overall system performance are also examined in the analysis.

Experimental Study for Horizontal Geothermal Heat Pump Heating Performance Analysis (수평형 지열 히트펌프 난방 성능 분석을 위한 실험적 연구)

  • Ihm, Pyeong chan;Cho, Sung woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.2
    • /
    • pp.7-12
    • /
    • 2016
  • This study have an objective to suggest basic data and measured result of heating performance on water-water type horizontal geothermal heat pump which is based on heating and cooling load calculation result of small residential house. The average temperature during measured periods is $9.4^{\circ}C$ on primary EWT and is $7.6^{\circ}C$ on primary LWT. The temperature difference shows $1.8^{\circ}C$ as average temperature. Because the average outdoor temperature of peak is lager than on December and than on January, the temperature difference between EWT and LWT is bigger that on January than that on December. The system COP is 3.62.

Performance Analysis of Heat Pump System with Air Source Evaporator and Single Unit Dual Sink Condenser (공기열원 2중히트싱크 열펌프의 성능해석)

  • Woo, J.S.;Lee, S.K.;Lee, J.H.;Park, H.S.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.11-22
    • /
    • 1998
  • Floor panel heating system using hot water is the primary heating system of domestic residential building. This paper presents the results of performance analysis of the heat pump system with air source evaporator and single unit dual sink(SUDSk) condenser. The heat exchanger combines two separated condensers into a single condenser and the object of the SUDSk condenser is to release energy to dual sinks, i.e. air for air heating system and water for panel heating system in one single unit. Simulation program is developed for single unit dual source(SUDS) SUDSk heat pump system and some experimental data are obtained and compared with simulation results. Differences of heating capacity and COP in dual source operating mode are 7% and 8% respectively. Simulation results are in good agreement with test results. Therefore, developed program is effectively used for design and performance prediction of dual source dual sink heat pump system with SUDS evaporator and SUDSk condenser.

  • PDF

Design and Test of ASME Strainer for Coolant System of Research Reactor (연구용 원자로 냉각계통의 ASME 스트레이너 설계 및 성능시험)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.24-29
    • /
    • 1999
  • The ASME strainers have been newly installed at the suction side of each reactor coolant pump to get rid of the foreign materials which may damage the pump impeller or interfere with the coolant path of fuel flow tube or primary plate type heat exchanger. The strainer was designed in accordance with ASME SEC. III, DIV. 1, Class 3 and the structural integrity was verified by seismic analysis. The screen was designed in accordance with the effective void area from the result of flow analysis for T-type strainer. After installation of the strainer, it was confirmed through the field test that the flow characteristics of primary cooling system were not adversely affected. The pressure loss coefficient was calculated by Darcy equation using the pressure difference through each strainer and the flow rate measured during the strainer performance test. And these are useful data to predict flow variations by the pressure difference.

  • PDF

Dynamic Modeling and Simulation of a Hybrid Heat Pump (하이브리드 열펌프 동적 모델링 및 시뮬레이션)

  • Shin, Younggy;Kim, Jae Hyun;Yoo, Byeong Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.406-412
    • /
    • 2013
  • A hybrid heat pump is under development with the goal of utilizing 120% of primary energy resources. A plate heat exchanger is added between the compressor and air-cooled condenser of an ordinary heat pump to heat water. For successful operation of the heat pump, it is necessary to develop a control algorithm under various operating conditions. As a virtual test bed for that purpose, a dynamic model has been developed, to simulate its dynamic behavior. It was modeled in transient one-dimensions, with varying phase lengths considered. The model was implemented in Matlab and Simulink. Simulation results were effectively applied to design a control algorithm. They also provided physical insight into how to design and operate the system.

Design of a Bidirectional AC-DC Converter using Charge Pump Power Factor Correction Circuit (전하펌프 역률개선 회로를 적용한 양방향성 AC-DC Converter 설계)

  • Ko, Seok-Cheol;Lim, Sung-Hun;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.227-230
    • /
    • 2001
  • This paper deals with a bidirectional ac-dc converter used in ups system application. We propose a Voltage-Source-Charge-Pump-Power-Factor-Correction(VS-CPPFC) ac-dc converters. First of all, we propose a charge pump power-factor-correction converter. Secondly, we derive and analyse a unity power factor condition. The proposed topology is based on a half-bridge for the primary and a current-fed push pull for the secondary side of a high frequency isolation transformer. The advantage of bidirectional flow of power achieved by using the same power components is that the circuit is simple and efficient. And the galvanically isolated topology is specially attractive in battery charge/discharge circuits in ups system. We design equivalent model for the steady-state circuit and analyse operation waveforms for each mode. We show that the proposed model can be applied to ups system by simulation processes.

  • PDF

Study on flow characteristics in LBE-cooled main coolant pump under positive rotating condition

  • Lu, Yonggang;Wang, Zhengwei;Zhu, Rongsheng;Wang, Xiuli;Long, Yun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2720-2727
    • /
    • 2022
  • The Generation IV Lead-cooled fast reactor (LFR) take the liquid lead or lead-bismuth eutectic alloy (LBE) as the coolant of the primary cooling circuit. Combined with the natural characteristics of lead alloy and the design features of LFR, the system is the simplest and the number of equipment is the least, which reflects the inherent safety characteristics of LFR. The nuclear main coolant pump (MCP) is the only power component and the only rotating component in the primary circuit of the reactor, so the various operating characteristics of the MCP are directly related to the safety of the nuclear reactor. In this paper, various working conditions that may occur in the normal rotation (positive rotating) of the MCP and the corresponding internal flow characteristics are analyzed and studied, including the normal pump condition, the positive-flow braking condition and the negative-flow braking condition. Since the corrosiveness of LBE is proportional to the fluid velocity, the distribution of flow velocity in the pump channel will be the focus of this study. It is found that under the normal pump condition and positive-flow braking conditions, the high velocity region of the impeller domain appears at the inlet and outlet of the blade. At the same radius, the pressure surface is lower than the back surface, and with the increase of flow rate, the flow separation phenomenon is obvious, and the turbulent kinetic energy distribution in impeller and diffuser domain shows obvious near-wall property. Under the negative-flow braking condition, there is obvious flow separation in the impeller channel.

Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition

  • Wang, Xiuli;Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Yu, Haoqian;Chen, Yiming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1842-1852
    • /
    • 2019
  • The AP1000 reactor coolant pump is a vertical shielded-mixed flow pump, is the most important coolant power supply and energy exchange equipment in nuclear reactor primary circuit system, whose steadystate and transient performance affect the safety of the whole nuclear island. Moreover, safety demonstration of reactor coolant pump is the most important step to judge whether it can be practiced, among which software simulation is the first step of theoretical verification. This paper mainly introduces the fluid-solid coupling simulation method applied to reactor coolant pump, studying the feasibility of simulation results based on workbench fluid-solid coupling technology. The study found that: for the unsteady calculations of the pure liquid media, the average head of the reactor coolant pump with bidirectional fluid-solid coupling decreases to a certain extent. And the coupling result is closer to the real experimental value. The large stress and deformation of rotor under different flow conditions are mainly distributed on impeller and idler, and the stress concentration mainly occurs at the junction of front cover plate and blade outlet. Among the factors that affect the dynamic stress change of rotor, the pressure load takes a dominant position.

A Study on the Noise Reduction of a Portable Fuel Cell System (휴대용 연료전지 시스템의 소음 저감에 대한 연구)

  • Jeon, In-Youl;Bae, Joon-Soo;Oh, Min-Jung;Choi, Sang-Hyeon;Lee, Choong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.858-861
    • /
    • 2006
  • In this paper, a study on the noise reduction in a mobile fuel cell system is presented. Among various fuel cell systems around 20W capacities designed for mobile electronic devices, the active direct methanol fuel cell (DMFC) systems have been recently developed. In such systems, the primary noise source is the air pump which provides sufficient air flow ($5{\sim}6$ liter/min) for electrochemical reaction with methanol fuel while the noise contributions from other auxiliary parts are relatively small. Especially, the discrete noise tones generated by the air pump are dominant and those frequency peaks related to the rotor harmonics are needed to be suppressed by a silencer. Therefore. the Herschel/Quinke (HQ) tubes, which use the out-of-phase cancellation of acoustic waves propagating through direct and indirect pathways, are applied to the inlet of the air pump. Performance of noise reduction with HQ silencer is analytically estimated by calculating the transmission. The length and number of thin HQ tubes are optimized to decrease the radiated noise. As a result, the sound pressure level could be successfully reduced by about 10 dB after applying three serially connected HQ tubes.

  • PDF