• Title/Summary/Keyword: Primary productivity

Search Result 387, Processing Time 0.029 seconds

Annual Increase in Carbon and Nitrogen Stocks of Trees and Soils in a 'Niitaka' Pear Orchard Following Standard Fertilization Recommendations (표준 시비에 따른 '신고'배 수체 및 재배지 토양의 탄소 및 질소 저장량 변화)

  • Ro, Hee-Myong;Choi, Jin-Ho;Lee, Seo-Yeon;Lee, Tae-Kyu;Kim, Jong-Sung;Park, Ji-Suk;Choi, Jang-Jeon;Lee, Min-Jin
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.591-597
    • /
    • 2015
  • We determined the total C and N stocks in trees and soils after 1 year of fertilization in an experimental orchard with 16-year-old 'Niitaka' pear (Pyrus pyrifolia Nakai cv. Niitaka) trees planted at $5.0m{\times}3.0m$ spacing on a Tatura trellis system. Pear trees were fertilized at the rate of 200 kg N, 130 kg P and $180kg\;K\;ha^{-1}$. At the sampling time (August 2013), trees were uprooted, separated into six fractions [trunk, main branches, lateral branches (including shoots), leaves, fruit, and roots] and analyzed for their total C and N concentrations and dry masses. Soil samples were collected from 0 to 0.6 m in 0.1 m intervals at 0.5 m from the trunk, air-dried, passed through a 2-mm sieve, and analyzed for total C and N concentrations. Undisturbed soil core samples were also taken to determine the bulk density. Dry mass per tree was 5.6 kg for trunk, 12.0 kg f or m ain branches, 15.7 kg for lateral branches, 5.7 kg for leaves, 9.8 kg for fruits, and 10.5 kg for roots. Total amounts of C and N per tree were respectively 2.6 and 0.02 kg for trunk, 5.5 and 0.04 kg for main branches, 7.2 and 0.07 kg for lateral branches, 2.6 and 0.11 kg for leaves, 4.0 and 0.03 kg for fruit, and 4.8 and 0.05 kg for roots. Carbon and N stocks stored in the soil per hectare were 155.7 and 14.0 Mg, respectively, while those contained in pear trees were 17.8 and $0.2Mg{\cdot}ha^{-1}$ based on a tree density of 667 trees/ha. Overall, C and N stocks per hectare stored in the pear orchard were 173.6 and 14.2 Mg, respectively. Compared with results obtained in 2012, the amounts of C stocks have increased by $17.7Mg{\cdot}ha^{-1}$, while those of N stocks remained virtually unchanged ($0.66Mg{\cdot}ha^{-1}$).

Structural Decomposition Analysis on Changes in Industrial Energy Use in Korea, 1980~2000 (구조분해분석을 통한 국내 산업별 에너지 소비 변화요인 연구)

  • Kim, Jin-Soo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.257-290
    • /
    • 2005
  • Korean energy use in industrial sector has increased more rapidly than other sectors during 1980~2000 periods. Relatively higher increases in industrial sector energy consumption raise questions whether government policy of rationalization of industrial energy use has been effective. In this study, we use 80-85-90 and 90-95-00 constant price input-output table to analyze increases in industrial energy use. Using an adjusted version of structural decomposition model introduced by Chen and Rose (1990), we decompose Changes of energy use into 17 elements. We classify entire industry sector into 32 sectors including four energy sectors (coal and coal products, refined petroleum, electricity and town gas). We then analyze changes of energy use by industrial level to check differences among industrial energy demand structures. Finally, we compare three industries, electronic product manufacturing, metal manufacturing and construction, that represent technology and capital intensive, energy and material intensive and labor and capital intensive industry. As results, we find that high energy using industries make the most effort to reduce energy use. Primary metal, petrochemical and mon-metal industries show improvements in elements such as energy and material productivity, energy and material imports, energy substitution and material substitutions towards energy saving. These results imply that although those industries are heavy users of energy, they put the best effort to reduce energy use relative to other industries. We find various patterns of change in industrial energy use at industrial level. To reduce energy use, electronic product manufacturing industry needs more effort to improve technological change element while construction industry needs more effort to improve material input structure element.

  • PDF

Carbon and Nitrogen Stocks of Trees and Soils in a 'Niitaka' Pear Orchard ('신고'배 재배지 내 수체 및 토양의 탄소 및 질소 저장량)

  • Lee, Tae-Kyu;Choi, Jang-Jeon;Kim, Jong-Sung;Lee, Han-Chan;Ro, Hee-Myong
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • To report country-specific carbon and nitrogen stocks data in a pear orchard by Tier 3 approach of 2006 IPCC guidelines for national greenhouse gas inventories, an experimental pear orchard field of the Pear Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration, Naju, Korea ($35^{\circ}01^{\prime}27.70N$, $126^{\circ}44^{\prime}53.50^{\prime\prime}E$, 6 m altitude), where 15-year-old 'Niitaka' pear (Pyrus pyrifolia Nakai cv. Niitaka) trees were planted at a $5.0m{\times}3.0m$ spacing on a Tatura trellis system, was chosen to assess the total amount of carbon and nitrogen stocks stored in the trees and orchard soil profiles. At the sampling time (August 2012), three trees were uprooted, and separated into six fractions: trunk, main branches, lateral branches (including shoots), leaves, fruits, and roots. Soil samples were collected from 0 to 0.6 m depth at 0.1 m intervals at 0.5 m from the trunk. Dry mass per tree was 4.7 kg for trunk, 13.3 kg for main branches, 13.9 kg for lateral branches, 3.7 kg for leaves, 6.7 kg for fruits, and 14.1 kg for roots. Amounts of C and N per tree were respectively 2.3 and 0.02 kg for trunk, 6.4 and 0.07 kg for main branches, 6.4 and 0.09 kg for lateral branches, 6.5 and 0.07 kg for roots, 1.7 and 0.07 kg for leaves, and 3.2 and 0.03 kg for fruits. Carbon and nitrogen stocks stored between the soil surface and a depth of 60 cm were 138.29 and $13.31Mg{\cdot}ha^{-1}$, respectively, while those contained in pear trees were 17.66 and $0.23Mg{\cdot}ha^{-1}$ based on a tree density of 667 $trees{\cdot}ha^{-1}$. Overall, carbon and nitrogen stocks per hectare stored in a pear orchard were 155.95 and 13.54 Mg, respectively.

Temporal and Spatial Variation Analysis of Suspended Solids, Ionic Contents, and Habitat Quality in the Woopo Wetland Watershed (우포늪 수계에서 부유물, 이온농도 및 서식지 특성에 대한 시 ${\cdot}$ 공간적 변이 분석)

  • Bae, Dae-Yeul;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.498-507
    • /
    • 2006
  • The main objective of present study was to evaluate how seasonal rainfall influenced natural habitat conditions of 10 metric habitat variables along with ionic conditions and suspended solids in the Woopo Wetland during August 2002-July 2003. Largest spatial variabilities in total suspended solids (TSS) occurred during the summer monsoon and the inorganic suspended solids (ISS), expressed as a inorganic proportion of total solids, showed linearly increasing trend from the upstream to downstream. This phenomenon was mainly attributed to counter flow of turbid water from the main Nakdong-River. During the flooding, ISS : TSS ratio showed large increases (92%) in the downstream than the upstream (43%). For this reason, transparency declined (mean=0.13 m, range=0.08-0.21 m) largely in the downstream reach and thus, chlorophyll-a concentration showed low values (range: $4.2-8.6\;{\mu}g\;L^{-1}$), indicating a direct influence on primary productivity or algal growth by inorganic turbidity. In the 2nd survey, ISS averaged 4.0 mg $L^{-1}$ (3.3-4.8 mg $L^{-1}$), thus the ISS decreased by 14 fold, compared to the ISS in the 1st survey during the flooding, while organic suspended solids (OSS) values were greater than those of ISS, indicating a dominance of organic solids. This condition was similar to solid contents in the 3rd survey, but showed a large difference compared to the 4th survey during the growing season. Habitat health assessments, based on 10 metric habitat variables, showed that QHEI values were greatest in the growing season (May) than any other seasons and largest spatial variations occurred in the 2nd survey. Overall, dataset suggest that seasonal episodic flooding during the monsoon may largely contribute nutrient cycling and sediment contents in the Woopo Wetland and Topyung Stream.

Comparison of Filtering Abilities of Korean Freshwater Bivalves and Their Filtering Effects on Water Quality (국내 담수산 조개의 섭식활동이 호수 수질에 미치는 영향)

  • Kim, Ho-Sub;Choi, Kwang-Hyun;Park, Jung-Hwan;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.92-102
    • /
    • 2002
  • This study was conducted to compare filtering abilities of three species of freshwater mussels (Cobicula fluminea, Corbicula leana and Unio douglasiae) and to evaluate their filter feeding effects on water quality change in experimental enclosure systems. Mussel feeding in both laboratory and enclosure resulted in decrease of particulate material, such as chlorophyll, total P, SS. In the treatment with 600 individuals of mussels, chllorophyll concentration and net primary productivity decreased from $87.3{\pm}4.5\;{\mu}g/L$ and $106.3{\pm}8.8\;{\mu}gC\;L^{-1}\;hr^{-1}$ to nearly the same level as the mussel-free enclosure ($25.0{\pm}0.5\;{\mu}g/L$ and $15.6{\pm}13.3\;{\mu}gC\;L^{-1}\;hr^{-1}$, respectively)(P< 0.05, n = 6, ANOVA). In concert with the decrease of chlorophyll concentration, not only was the transparency enhanced from 0.48 m to 1.2m but also the suspended solids and total phosphorus decreased from $22.0{\pm}1.0\;mg/L$ to $7.5{\pm}0.5\;mg/L$ and $133{\pm}0.8\;{\mu}g/L$ to $70{\pm}0.0\;{\mu}g/L$, respectively (P<0.001, $r^2$>0.71, n = 11). Although slight decrease of SRP concentration and the increase of inorganic nitrogen ($NH_3-N$ and $NO_2-N$) were observed in the mussel addition enclosure, there was no statistical difference between two enclosures. Based on the filtering rate on phytoplankton and nutrient release rate in forms of feces and pseudofeces, Corbicula leana appeared to be the most efficient filter-feeder among three mussel species. These results inidicate that Cobicula play an important role in controlling particulate sestons and thus it could be applied as a biocontroler for the water quality management in lakes and reservoirs with algal blooms.

Short-Term Nutrient Enrichment Bioassays and Nutrient Limitation in Daechung Reservoir (대청호에서의 단기 영양염 첨가 실험 및 제한 영양염류 분석)

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.136-141
    • /
    • 2010
  • In situ experiments of Nutrient Enrichment Bioassays (NEBs) were conducted in the field along with in the laboratory to determine which nutrient limited phytoplankton growth as a indicator of primary productivity. For the NEBs, the water was sampled using a polyethylene-lined container and dispensed into 6 L water tank in the laboratory. The control (C, no nutrient spike) and six treatments of phosphorus (P), 2-fold phosphorus (2P), 4-fold phosphorus (4P), nitrate nitrogen ($NO_3$-N), 2-fold nitrate nitrogen ($2NO_3$-N), and phosphorus and nitrate nitrogen (P+$NO_3$-N) were set up in the lacustrine zone near the dam site, Daechung Reservoir in September, 2009 and analyzed the diel changes of total nitrogen (TN), total phosphorus (TP), and chlorophyll-$\alpha$ (Chl-$\alpha$) in the cubitainers. The short-term NEBs showed that algal response in the treatments spiked phosphorus (P, 2P, and 4P) were significantly (p < 0.05) greater than the response in the control (C), and nitrogen-spike. Also, the response in 4P-treatment was greater than those in the P- and 2P-treatments. In contrast, there was no significant differences (p > 0.20) between the $NO_3$-N and $2NO_3$-N treatment. The outcomes of the NEBs suggest that phosphorus limited the phytoplankton growth and nitrogen was not limited in this system. Furthermore, in the N + P treatments, the response was minimum, compared to all other treatments and the control, indicating that even if the system is evidently P-limited system, when added the nitrogen, the response showed the inhibition. Also, > 95% of observed long-term TN:TP ratios in the ambient water showed > 17, which is the criteria of P-limitation, supporting the P-limitation in the system. Overall, these results suggest that phytoplankton biomass near the dam is a direct linear function of P-loading near the watershed, if the phosphorus pool is mainly dissolved fraction.

A Study on the Growth Analysis of Pinus koraiensis Seedings under Various Relative Light Intensities and Planting Densities (잣나무 묘목(苗木)의 생육환경(生育環境) 요인(要因)에 따른 생장해석적(生長解析的) 연구(硏究))

  • Kim, Young Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.3
    • /
    • pp.314-322
    • /
    • 1989
  • For the improvement of nursery condition and the study of eco-physiological characteristics of Pinus koraiensis(2-2) seedlings, the primary productivity was investigated and the growth characteristics and their correlationship were analyzed from May to September in 1987. Seedlings used in this study were grown at the nursery of Experimental Forestry of Kyung Hee Univ. The installation of experimental plots were divided into control plot (100%), 63%, 37% and 19% relative light intensity, and each relative light intensity plots were split into $15{\times}15/m^2$, $12{\times}12/m^2$, $9{\times}9/m^2$ and $6{\times}6/m^2$ plnting density by randomized black design method. To take into account the edge effect of plant population, material were selected from each plot by random sampling at 30 days interval. Each sampled material was divided into leaf and stem drived in a drying oven at the temperature of $85^{\circ}C$ until it had constant weight and weighed. and leaf area was surveyed. Growth analysis for RGR and NAR was done by Blackman method and correlation coefficient were investigated between RGR and NAR by analyzing the dry matter production and growth characteristics of the material, cultivated on the experimental nursery under the condition of different treatment the obtained result were as follows : 1. The increasing rate of dry matter was similar at early stage of growth, but not at late stage. 2. Leaf area growth was the maximum value at 63% relative light intensity and the minimum at 19% RLI 3. The value of RGR was the highest on June under $6{\times}6/m^2$ planting density in 63% relative light intensity, the lowest on September under $12{\times}12/m^2$ of 19% relative light intensity. 4. The change NAR decreased in early stage of growth, while it increased on August and September, The value of RGR on June under $6{\times}6/m^2$ planting density in 100 light intensity was the highest, and on September under $12{\times}12/m^2$ planting density in 19% relative light intensity was the lowest. 5. Regression and correlation between RGR and NAR showed significantly positive.

  • PDF

On the Nighttime Correction of CO2 Flux Measured by Eddy Covariance over Temperate Forests in Complex Terrain (복잡지형의 온대산림에서 에디 공분산으로 관측된 CO2 플럭스의 야간 자료 보정에 관하여)

  • Kang, Minseok;Kim, Joon;Kim, Hyun-Seok;Thakuri, Bindu Malla;Chun, Jung-Hwa
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.3
    • /
    • pp.233-245
    • /
    • 2014
  • Nighttime correction of $CO_2$ flux is one of the most important and challenging tasks in eddy covariance measurements over a complex mountainous terrain. In this study, we have scrutinized the quality and the credibility of the $CO_2$ flux datasets which were produced by employing three different methods of nighttime correction, i.e., (1) friction velocity ($u^*$) correction, (2) light response curve (LRC) correction, and (3) advection-based van Gorsel (VG) correction. The whole year datasets used in our analysis were collected at the two KoFlux tower sites (i.e., GDK deciduous forest site at the upper hill and GCK coniferous forest site at the lower hill) located in the valley of Gwangneung National Arboretum in central Korea. The resultant magnitudes and patterns of ecosystem respiration ($R_E$), gross primary productivity (GPP), and net ecosystem exchange (NEE) of $CO_2$ showed marked differences among the datasets produced with three different correction methods, which were also site-specific. The examination from micrometeorological and ecological perspectives suggests that the major cause of some inconsistency seems to be associated with the advection of $CO_2$ along the sloping terrain and the inappropriate selection of the correction data that might have been already affected by advective flows. The comparison with the results from other studies indicated that the overall characteristics of the corrected $CO_2$ fluxes at GDK and GCK (except those with LRC correction) were well within the ranges reported in the literature for various ecosystems in East Asia in similar latitudes. However, our study also implies that there will be always a room for further improvement in the present datasets. Therefore, caution must be exercised for the data users in order to properly use the updated version of datasets through transparent, open and participatory communication with data producers.

Enhanced production of monacolin-K through supplement of monacolin-K precursors into production medium and cloning of SAM synthetase gene (metK) (Precursor제공 및 생합성 관련 유전자의 cloning을 통한 Monacolin-K 생산성 향상)

  • Lee, Mi-Jin;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.519-524
    • /
    • 2008
  • Monacolin-K is a strong anti-hypercholesterolemic agent produced by Monascus sp. via polyketide pathway. High-yielding mutants of monacolin-K were developed through rational screening strategies adopted based on understanding of monacolin-K biosynthetic pathway. Through the experiments for investigating various amino acids as putative precursors for the monacolin-K biosynthesis, it was found that production level of monacolin-K was remarkably increased when optimum amount of cysteine was supplemented into the production medium. We suggested that these phenomena might be related to the special roles of SAM (S-adenosyl methionine), a putative methyl group donor in the biosynthetic pathway of monacolin-K, demonstrating close interrelationship between SAM-synthesizing primary metabolism and monacolin-K synthesizing secondary metabolism. Namely, increase in the intracellular amount of SAM derived from the putative precursor, cysteine which was extracellularly supplemented into the production medium might contribute to the significant enhancement in the monacolin-K biosynthetic capability of the highly mutated producers. On the basis of these assumptions derived from the above fermentation results, we decided to construct efficient expression vectors harboring SAM synthetase gene (metK) cloned from A. nidulans, with the hope that increased intracellular level of SAM could lead to further enhancement in the monacolin-K production through overcoming a rate-limiting step associated with monacolin-K biosynthesis. Hence, in order to overcome the plausible rate-limiting step associated with monacolin-K biosynthesis by increasing intracellular level of SAM, we transformed the producer mutants with an efficient expression vector harboring gpdA promoter of the producer microorganism, and metK gene. Notably, from the resulting various transformants, we were able to screen a very high-yielding transformant which showed approximately 3.3 fold higher monacolin-K productivity than the parallel nontransformed mutants in shake flask cultures performed under the identical fermentation conditions.

Ecological Role of Urban Stream and Its Improvement (도시하천의 생태학적 역할과 개선방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.15-25
    • /
    • 1998
  • A stream plays an important role as the source of drinking water, the ecological space and the living space. But the today's urban stream whose ecosystem is destroyed and water quality become worse in consequence of covering, concrete dyke construction, and the adjustment of high-water-ground[dunchi], is deprived of the function as a stream. Therefore this paper aims to elucidate the role that urban stream plays ecologically and to try to find a improvement to the problem. A stream is the pathway through which several types of the solar radiation energy are transmitted and the place which is always full of life energy. In the periphery of a stream, primary productivity is high and carrying capacity of population is great. Thus ancient cities based on agricultural products grew out of the fertile surroundings of stream. In Korea most cities of the Chosen Dynasty Period based on the agriculture have grown out of the erosional basins where solar energy is concentrated. The role of a stream in this agricultural system is the source of energy and material(water and sediment) and a lifeline. In consequence of the growth of cities and the rapid growing demands of water supply after the Industrial Revolution, a stream has become a more important locational factor of city. However, because cities need the life energy of urban streams no longer, urban streams cannot play role as a lifeline. And As pollutant waste water has poured into urban streams after using external streams' water, urban streams have degraded to the status of a ditch. As the results of the progress of urbanization, the dangerousness of inundation of urban stream increased and its water quality became worse. For the sake of holding back it, local governments constructed concrete dyke, adjusted high-water-ground[dunchi], and covered the channel. But stream ecosystem went to ruin and its water quality became much worse after channelization. These problems of urban stream can be solved by transmitting much energy contained in stream to land ecosystem as like rural stream. We should dissipate most of the energy contained in urban stream by cultivating wetland vegetation from the shore of stream to high-water-ground, and should recover a primitive natural vigorous power by preparation of ecological park.

  • PDF