• Title/Summary/Keyword: Primary mineral

Search Result 221, Processing Time 0.023 seconds

Mineralogy of Cu-Co Ores from Democratic Republic of Congo (콩고민주공화국 동-코발트 광석의 광물학적 특정)

  • Cho, Hyen-Goo;Seo, Hye-Min;Kim, Soon-Oh;Kim, Young-Ho;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.305-313
    • /
    • 2010
  • Mineralogical characteristics of Cu-Co ores from the Central African Copperbelt in the Democratic Repblic of Congo are studied using powder X-ray diffractometer, general area detector X-ray diffractometer, and electron proble microanalyzer. Black ores are mainly composed of heterogenite (cobalt oxide/hydroxide mineral) and malachite (copper carbonate mineral), whereas green ores are only composed of malachite. Heterogenite shows very bright white color under the reflected microscope, and belongs to 3R polytype, because it has d-spacings at $4.39{\AA}$ and $2.316{\AA}$. Since NiO and $Fe_20_3$ content of heterogenite are lower than those of 3R polytype from other localities, it cannot completely exclude the presence of 2H polytype in heterogenite from this study. Malachite is light grey color under the reflected microscope with approximate chemical formula of $Cu_{1.97}Co_{0.02}Fe^{2+}{_{0.01}}CO_3(OH)_2$. Heterogenite and malachite were probably formed at the supergene emichment stage, the last mineralization stage in the Central African Copperbelt. Cobalt seems to be much more emiched in the black supergene (oxy)hydroxide ore than those in the primary sulfide ore.

Precipitation Characteristics of Ammonium Metavanadate from Sodium Vanadate Solution by Addition of Ammonium Chloride (소듐바나데이트 수용액에서 염화암모늄 첨가에 의한 암모늄메타바나데이트 침전특성 고찰)

  • Yoon, Ho-Sung;Heo, Seo-Jin;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.28-37
    • /
    • 2020
  • In this study, the effect of precipitation temperature, ammonium chloride amount and addition method, vanadium and sodium hydroxide content of the solution on the precipitation of ammonium metavanadate were examined by using the sodium vanadate(NaVO3) solution in alkali region as a starting material. As the pH of solution decreased, the addition amount of ammonium chloride and the vanadium content of the solution increased, the precipitation rate of ammonium metavanadate increased. In this research condition, the basic conditions for obtaining more than 90% of precipitation yield were 10,000mg/L of vanadium content, 2equivalents of ammonium chloride addition, room temperature, and 2 hours of precipitation time. The size of precipitated particles decreased with increasing precipitation rate. Especially when liquid ammonium chloride was injected into the solution, the precipitation rate was the slowest and the particle size of the precipitate was the largest. After the primary precipitation by adding ammonium chloride as a solid, the secondary precipitation was carried out by adding new reactants. At this time, the precipitation with added ammonium chloride solid was not affected by the precipitates present in the solution. However, when liquid ammonium chloride was added, new precipitate was deposited on the surface of the precipitate present in the solution, increasing its size. Due to the difference in ammonium metavanadate solubility to temperature, the precipitation temperature at the vanadium content of 10,000mg/L in the solution affected the precipitation rate of ammonium metavanadate and the precipitation temperature did not affect the precipitation rate at a high concentration of more than 30,000mg/L vanadium content in the solution.

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River (수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구)

  • Kim, So-Ra;Jeong, Sueng-Won;Lee, Gwang-Soo;Yoo, Dong-Geun
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.164-174
    • /
    • 2021
  • The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data (다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정)

  • Kim, Ho-Rim;Yu, Soonyoung;Yun, Seong-Taek;Kim, Kyoung-Ho;Lee, Goon-Taek;Lee, Jeong-Ho;Heo, Chul-Ho;Ryu, Dong-Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.353-366
    • /
    • 2022
  • Spatial estimation of geoscience data (geo-data) is challenging due to spatial heterogeneity, data scarcity, and high dimensionality. A novel spatial estimation method is needed to consider the characteristics of geo-data. In this study, we proposed the application of Gaussian Mixture Model (GMM) among machine learning algorithms with multivariate data for robust spatial predictions. The performance of the proposed approach was tested through soil chemical concentration data from a former smelting area. The concentrations of As and Pb determined by ex-situ ICP-AES were the primary variables to be interpolated, while the other metal concentrations by ICP-AES and all data determined by in-situ portable X-ray fluorescence (PXRF) were used as auxiliary variables in GMM and ordinary cokriging (OCK). Among the multidimensional auxiliary variables, important variables were selected using a variable selection method based on the random forest. The results of GMM with important multivariate auxiliary data decreased the root mean-squared error (RMSE) down to 0.11 for As and 0.33 for Pb and increased the correlations (r) up to 0.31 for As and 0.46 for Pb compared to those from ordinary kriging and OCK using univariate or bivariate data. The use of GMM improved the performance of spatial interpretation of anthropogenic metals in soil. The multivariate spatial approach can be applied to understand complex and heterogeneous geological and geochemical features.

Quantitative analysis of hydrogen in thin film by scattering-recoil co-measurement technique (산란-되튐 동시 측정 방법에 의한 박막 중 수소 정량법)

  • Lee, Hwa-Ryun;Eum, Chul Hun;Choi, Han-Woo;Kim, Joonkon
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.400-406
    • /
    • 2006
  • Hydrogen analysis by elastic recoil detection has been performed utilizing polyimide film as a reference sample of known hydrogen content assuming the soundness of ion beam current integration. However beam current integration at higher incidence angle is not reliable. Scattering yield per unit fluence by current integration which is normalized per unit path length decreases as the sample tilt angle is getting higher. Moreover because beam current integration at high tilt angle is incomplete, hydrogen evaluation is very risky by direct comparison of sequentially collected recoil spectra between reference and target sample. In this study, primary ion beam dose is determined by backscattering spectrum that is collected simultaneously with recoil spectrum instead of ion beam current integration in order to reduce uncertainty arising in the process of current integration and to enhance the reliability of quantitative analysis. Three test samples are selected $-7.6{\mu}m$ polyimide film, hydrogen implanted silicondioxide and Au deposited carbon wafer- and analyzed by two methods and compared.

Refined Fuel Production Using Municipal Sewage Sludge(I) - Preparation of Refined Solid Fuels from Organic Sludge - (하수슬러지의 정제 연료화 기술(1) - 유기성 슬러지의 정제 고체연료 제조 -)

  • Kang, S.K.;Lee, S.J.;Ryu, I.S.;Lee, K.C.
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.47-56
    • /
    • 2007
  • Utilization of sewage sludge for industrial fuel should be considered in appropriate calory with low emission of environmental pollutants and the amount of sewage sludge for continuously long-time operation. For the low grade fuel(<4,000kcal/kg), one of proper processes is that coal and oil are added into sewage sludge to remove impurities and increase calory(>7,000kcal/kg) and the amount of fuel having sewage sludge. Recently, 2-step agglomeration has been attempted by secondarily agglomerate sewage sludge onto the primary nuclei formed by agglomeration of coal and oil. Furthermore, sawdust and waste oil can substitute about 1/3 each for coal and mineral oil consumed in this process, which will lead to securing alternative energy resources from environmental pollutants as well as cost reduction.

  • PDF

Natural Organic Matter Removal and Fouling Control in Low-Pressure Membrane Filtration for Water Treatment

  • Cui, Xiaojun;Choo, Kwang-Ho
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Natural organic matter (NOM) is a primary component of fouling in low-pressure membrane filtration, either solely, or in concert with colloidal particles. Various preventive measures to interfere with NOM fouling have been developed and extensively tested, such as coagulation, oxidation, ion exchange, carbon adsorption, and mineral oxide adsorption. Therefore, this article aims to conduct a literature review covering the topics of low-pressure membrane processes, NOM characteristics and fouling behaviors, and diverse fouling control strategies. In-depth explanations and discussion are made regarding why some treatment options are able to remove NOM from source water, but do not reduce fouling. This review provides insight for hybridized membrane processes with respect to NOM removal and fouling mitigation in water treatment.

A study on Cause of Errors of Dissolved Gases Analysis in Transformer (변압기 유중 가스 진단 오차 원인에 대한 연구)

  • Cho, Sung-Min;Lee, Yang-Jin;Kim, Young-Sung;Kim, Jae-Chul;Kweon, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.141-143
    • /
    • 2006
  • Dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-filled electrical equipment. KEPCO make a rule of DGA in 1985. They have been diagnosing power transformer using their DGA criteria. In this paper, we analysis the result of DGA data about transformer in the substation. We try to find out what is cause of an error in DGA diagnosis considering accuracy in extracting gases from mineral oil in transformer. The carbon-monoxide was primary reason of warning in DGA data. We specially consider that aging is a cause of generating of carbon-monoxide in power transformer.

  • PDF

BONE FORMATION BY HUMAN ALVEOLAR BONE CELLS (사람 치조골세포를 이용한 골형성)

  • Choi, Byung-Ho;Park, Jin-Hyoung;Huh, Jin-Young;Oh, Jin-Rok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.1
    • /
    • pp.42-45
    • /
    • 2002
  • Cultures of primary human alveolar bone-derived cells were established from alveolar bone chips obtained from normal individuals undergoing tooth extraction. These cells were expanded in vitro until passage 3 and used for the in vivo assays. Cells were loaded into transplantation vehicles, and transplanted subcutaneously into immunodeficient mice to study the capacities of human alveolar bone-derived cells to form bone in vivo. Transplants were harvested 12 weeks after transplantation and evaluated histologically. Of 10 human alveolar bone-derived cell transplants, two formed a bone-like tissue that featured osteocytes and mineral. Eight of the ten formed no osseous tissue. These results show that cells from normal human alveolar bone are capable of forming bone-like tissue when transplanted into immunodeficient mice.

The Evaluation of Thermal Aging Characteristics in Insulating Materials of the Pole Transformers (가속열화 방법에 의한 주상변압기 절연물의 열 열화 특성 평가)

  • 이병성;송일근;이재봉;한상옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1136-1141
    • /
    • 2003
  • The primary insulation materials used in an oil filled transformer are kraft paper, wood, porcelain and oil. Modern transformers use chemically treated paper to improve its tensile strength and resistance to aging caused by immersion in oil. But these insulation papers are mainly aged by thermal stress. Over the life time of the insulation paper and oil, it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper used in the layer insulation. We made two aging cells in which insulation papers and mineral oil are conducted to test thermal properties. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.