• Title/Summary/Keyword: Primary mineral

Search Result 223, Processing Time 0.028 seconds

Pulp Treatment of Triple Tooth in Primary Dentition: Two Case Reports (유치열에 나타난 삼중치에서 치수 치료 : 증례 보고)

  • Jeong, Hankeul;Lee, Nanyoung;Lee, Sangho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.43 no.2
    • /
    • pp.192-199
    • /
    • 2016
  • Triple tooth is rare in primary dentition; it is the abnormal fusion of three teeth. There are a few reports of double teeth, but triple teeth are rare. These multiple teeth create several clinical problems, not only esthetic problems but also a high caries susceptibility, congenital missing permanent tooth germ(s), orthodontic problems, and periodontal problems. They also make it difficult to perform pulp treatment because of the complex tooth structure. A 1-year 7-month-old male underwent a partial pulpotomy with mineral trioxide aggregate (MTA) when pulp exposure caused by deep caries occurred at a maxillary anterior triple tooth in the first case. The second case was a 1-year 9-month-old male presenting with a fracture line at a mandibular anterior triple tooth. After removing the fractured fragment, a pulpectomy was performed at the remaining primary lateral incisors. Specific complications were not observed during 24 and 6 months of follow-up, respectively.

Effects of Arginine Supplementation on Bone Mineral Density and Bone Markers in OVX Rats (난소절제쥐에서 Arginine 첨가 식이가 골밀도 및 골대사에 미치는 영향)

  • Choi, Mi-Ja
    • Journal of Nutrition and Health
    • /
    • v.42 no.4
    • /
    • pp.309-317
    • /
    • 2009
  • As far as we know, there were no studies of the effect of L-arginine on bone metabolism in post-menopausal women or ovariectomized rats. The primary objective of the current study was to determine whether arginine supplementation was associated with alterations in femoral and spinal bone mineral density (BMD) and bone markers in ovariectomized (Ovx) rats. Forty female Sprague-Dawley rats were divided into two groups, Ovx and sham groups, which were each randomly divided into two subgroups that were fed control and arginine supplemented diet. All rats were fed on experimental diet and deionized water ad libitum for 9 weeks. Bone formation was measured by serum osteocalcin and alkaline phosphatase (ALP) concentrations. Bone resorption was measured by deoxypyridinoline (DPD) crosslinks immunoassay and corrected for creatinine. Serum osteocalcin, growth hormone, insulin-like growth factor-1 (IGF-1), parathyroid hormone (PTH) and calcitonin were analyzed using radioimmunoassay kits. Bone mineral density (BMD) and bone mineral content (BMC) were measured using PIXImus (GE Lunar Co, Wisconsin, USA) in spine and femur. The serum and urine concentrations of Ca and P were determined. The plasma was analyzed for arginine. Diet did not affect weight gain, mean food intake, and plasma arginine concentration. Urinary Ca excretion was decreased by arginine supplementation in Ovx rats, but statistically not significant. The Ovx rats fed arginine-supplemented diet were not significantly different in ALP, osteocalcin, crosslinks value, PTH, calcitonin and IGF-1 compared to those fed control diet. The arginine-supplemented group had significantly higher serum Ca and growth hormone than control group. Spine and femur BMD were significantly increased by arginine supplementation on 5th and 9th weeks after feeding. Our findings indicate that dietary L-arginine supplementation decreased bone mineral density loss in Ovx rats. Therefore, dietary arginine supplementation may represent a potentially useful strategy for the management of osteoporosis.

Sulfate Attack According to the Quantity of Composition of Cement and Mineral Admixtures (시멘트 화학성분(C3A)과 무기 혼화재에 따른 황산염 침투 특성)

  • Ahn, Nam-Shik;Lee, Jae-Hong;Lee, Young-Hak
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.547-556
    • /
    • 2011
  • The primary factors affecting concrete sulfate resistance are the chemical composition of the Portland cement, and the chemistry and quantity of mineral admixtures. To investigate the effect of those on the sulfate attack, the testing program involved several different mortar mixes using the standardized test, ASTM C1012. Four different cements were evaluated, including one Type I cement, two Type I-II cements, and one Type V cement. Mortar mixes were also made with mineral admixtures, as each cement was combined with three different types of mineral admixtures. One Class F fly ash, one Class C fly ash, and one ground granulated blast furnace slag (GGBFS) were added in various percent volumetric replacement levels. Expansion measurements were taken and investigated with the expansion criteria recommended by ASTM.

Taguchi's Robust Design Method for Optimization of Grinding Condition by Hammer Mill (다구치 방법을 활용한 해머밀 분쇄공정의 최적화 연구)

  • Choe, Hong-Il;Kim, Byoung-Gon;Park, Chong-Lyuck;Jeong, Soo-Bok;Jeon, Ho-Seok;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.219-225
    • /
    • 2010
  • Optimal grinding condition was examined by changing only the size of screen opening with fixing other factors to produce coal fines of particle sizes required for circulating fluidized bed gasifier. At least 85 wt% of the coal particles should fall into the size range of 0.045~1.0 mm for efficient gasification. In this study, hammer mill was used to grind Chinese low rank lignite coal following grinding condition designed by Taguchi method. The analysis of signal to noise ratio showed that optimum grinding condition for the gasifier was 3 mm in primary screen size and 1.3 mm in secondary screen size on the 95% level of significance.

Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs (화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성)

  • Chang, Han Kwon;Jang, Hee Dong;Kim, Tae-Oh;Kim, Sun Kyung;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF

Chemical Methods Used in Petrological Analysis of Koongarra Uranium Ore Samples in ASSAR Natural Analogue Program

  • Park, Yong-Joon;Pyo, Hyung-Ryul;Kim, Ji-Young;Kim, Won-Ho
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.518-530
    • /
    • 1998
  • A natural analogue study has been performed for the Koongarra uranium ore deposit in Australia as an international agreement of the Analogue Studies in the Alligator Rivers Region (ASARR). Rocks obtained from the Koongarra deposit, Northern Territory of Australia, were examined in order to understand uranium migration processes of primary and secondary ore-body in both weathered and unweathered zones. Total alpha activities of rock samples were measured to compare the relative amount of uranium in the sample. Uranium distributions have been investigated by means of both the alpha-autoradiography and the fission track registration technique after irradiation in a flux of thermal neutrons (~10$\times$$10^{13}$nㆍ$cm^{-2}$ㆍs$^{-1}$) for 2 minutes. The mineral phases corresponding to the registered alpha-tracks and fission tracks were identified by petrological observation with optical microscope as well as X-ray diffraction and electron microprobe analysis (EPMA). Uranium was found mostly inside of the fracture of the quartzite and its mineral phase was identified as sklodowskite. The mineral phase associated with high uranium concentration was found as illeminite by petrological observation with optical microscope as well as EPMA.

  • PDF

Primary metabolic responses in the leaves and roots of bell pepper plants subjected to microelements-deficient conditions

  • Sung, Jwakyung;Lee, Yejin;Lee, Seulbi
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.179-189
    • /
    • 2021
  • Plants need essential mineral elements to favorably develop and to complete their life cycle. Despite the irreplaceable roles of microelements, they are often ignored due to the relative importance of macroelements with their influence on crop growth and development. We focused on the changes in primary metabolites in the leaves and roots of bell pepper plants under 6 microelements-deficient conditions: Copper (Cu), Zinc (Zn), Iron (Fe), Manganese (Mn), Boron (B) and Molybdenum (Mo). Bell pepper plants were grown in hydroponic containers, and individual elements were adjusted to 1/10-strength of Hoagland nutrient solution. A remarkable perturbation in the abundance of the primary metabolites was observed for the Fe and B and the Mn and B deficiencies in the leaves and roots, respectively. The metabolites with up-accumulation in the Fe-deficient leaves were glucose, fructose, xylose, glutamine, asparagine and serine. In contrast, the Mn deficiency also resulted in a higher accumulation of glucose, fructose, xylose, galactose, serine, glycine, β-alanine, alanine and valine in the roots. The B deficiency noticeably accumulated alanine, valine and phenylalanine in the roots while it showed a substantial decrease in glucose, fructose and xylose. These results show that the primary metabolism could be seriously disturbed due to a microelement deficiency, and the alteration may be either the specific or adaptive responses of bell pepper plants.

Physiological Responses to Mineral-Excessive Conditions: Mineral Uptake and Carbohydrate Partitioning in Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kang, Seongsoo;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.563-570
    • /
    • 2014
  • The shortage or surplus of minerals directly affects overall physiological metabolism of plants; especially, it strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake, synthesis and partitioning of soluble carbohydrates, and the relationship between them in N, P or K-excessive tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with excessive N ($20.0mmol\;L^{-1}$ $Ca(NO_3)2{\cdot}4H_2O$ and $20.0mmol\;L^{-1}$ $KNO_3$), P ($2.0mmol\;L^{-1}$ $KH_2PO_4$), and K ($20.0mmol\;L^{-1}$ $KNO_3$), respectively, for 30 days. Shoot growth rates were significantly influenced by excessive N or K, but not by excessive P. The concentrations of water soluble N (nitrate and ammonium), P and K were clearly different with each tissue of tomato plants as well as the mineral conditions. The NPK accumulation in all treatments was as follows; fully expanded leaves (48%) > stem (19%) = roots (16%) = petioles (15%) > emerging leaves (1). K-excessive condition extremely contributed to a remarkable increase in the ratio, which ranged from 2.79 to 10.34, and particularly potassium was dominantly accumulated in petioles, stem and roots. Fresh weight-based soluble sugar concentration was the greatest in NPK-sufficient condition ($154.8mg\;g^{-1}$) and followed by K-excessive (141.6), N-excessive (129.2) and P-excessive (127.7); whereas starch was the highest in K-excessive ($167.0mg\;g^{-1}$) and followed by P-excessive (146.1), NPK-sufficient (138.2) and N-excessive (109.7). Soluble sugar showed positive correlation with dry weight-based total N content (p<0.01) whereas was negatively correlated with soluble P (p<0.01) and dry weight-based total P (p<0.01). On the other hand, starch production was negatively influenced by total N (p<0.001), but, it showed positive relation with total K concentration (p<0.05). This study shows that uptake pattern of NPK and production and partitioning of soluble carbohydrate were substantially different from each mineral, and the relationship between water soluble- and dry weight-based-mineral was positive.

Development of for Mineral Salt Manufacturing System using Deep Sea Water (해양 심층수를 이용한 미네랄소금 제염장치 개발)

  • Kim H. J.;Shin P. K.;Moon D. H.;Jung D. H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.183-189
    • /
    • 2004
  • Deep ocean water is located in the sea deeper than 200m. At such depth the solar light does not reach, photosynthesis is not performed and nutrition salt is not consumed. Therefore, campared with surface water, Deep Sea Water contains more nutrition salt, such as nitrogen and phosphor. Moreover, it has the good balance of minerals. This Research is primary attempt for apply deep sea water to food industry. New type of mineral salt manufacturing system was developed and high levels of Ca, K, Mg detected from the salt analysis.

  • PDF

IRON, COPPER, COBALT AND MANGANESE REQUIREMENTS IN MILK-FED CROSSBRED CALVES

  • Kaur, Harjit;Chopra, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.103-106
    • /
    • 1990
  • A balance study was conducted to determine the requirements of iron, copper, cobalt and manganese in crossbred calves. Six calves were fed milk average 10 percent of their body weight and were supplemented with 15 g mineral mixture daily. A balance trial was conducted at $2\frac{1}{2}$ months of age. The primary route of excretion was through digestive tract as 99.87, 80.99, 77.27 and 99.94 percent of Fe, Cu, Co and Mn were excreted through faeces. The requirements of Fe, Cu, Co and Mn were computed using the respective mineral balance data and were found to be 169.60, 7.20, 4.48 and 8.89 mg/kg respectively.