• Title/Summary/Keyword: Primary jet

Search Result 129, Processing Time 0.025 seconds

The Study of Numerical Simulation on the Thermal Flow Performance for the Design of Low Emission Stoker Type Municipal Waste Incinerator (저공해 스토커형 도시폐기물 소각로 설계를 위한 열유동 수치해석 연구)

  • 전영남;송형운;김미환
    • Journal of Environmental Science International
    • /
    • v.11 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • A Numerical simulation on the thermal flow performance was carried out to propose the incinerator type for the domestic refuses and to investigate the design factor and operating conditions. The SSTI(Standard Stoker Type Incinerator) proposed in this study was modified from the type with central f)ow. It has the characteristics of good mixing between refuse and hot combustion gas in primary combustion chamber and between unburned gas inflowing and secondary air jet in secondary chamber. By predictive results, the SSTI was no recirculation zone in secondary chamber so that mixing time was increased with high residence time. It has good characteristics of combustion and low emission. Parametric screening studies have been understood with phenomenon of combustion in incinerator.

A Development of the Program for Flight Suitability Distinction and Calculation of Available Sorties (비행 적합성 판별 및 소티수 산출 프로그램 개발)

  • Kim, Young-Rae;Lee, Sang-Chul;Lee, Jin-Sub;Ryu, Kwang-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.105-110
    • /
    • 2011
  • The flight test comes at the end of the aircraft development process and is an unique part. The purposes of the flight test are to evaluate the characteristics of the aircraft and validate its design in the real operating environment. Atmospheric considerations are key elements, when the planner of flight test establishes the flight test planning. The primary objective of atmospheric considerations is to ensure safety of the vehicle. The planning through atmospheric considerations can minimize flight cancellations caused by severe weather. In this paper, we present a program for flight suitability distinction, and develop a program for calculation of available sorties.

The Effect of Particle Size on Ignition Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.285-292
    • /
    • 1993
  • A cylindrical-shape, horizontal furnace was used to investigate the effect of particle size on the pulverized coal combustion behavior. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Ignition characteristics of pulverized coal flame were determined through the amount of methane in the carrier gas for the self-sustaining flame. Easiest ignition occurred with the immediately-sized coal particles. Ignition of coal jet flame appeared to occur through a gas-phase homogeneous process for particles larger than 30 microns. Below this limiting size, heterogeneous process probably dominated ignition of coal flame. Oxygen concentration of combustion air was varied up to 50%, to determine the oxygen-enrichment effect on the coal ignition behavior. Oxygen enrichment of primary air assisted ignition behavior of pulverized coal flame. However, enrichment of secondary air didn't produce any effect on the ignition behavior.

  • PDF

Study on Characteristics of Spray Combustion for Various Operation Conditions in a Gas Turbine Combustor (가스터빈 연소기 내 운전조건 변화에 따른 분무연소 특성 연구)

  • Cho, S.P.;Kim, H.Y.;Park, S.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.3-10
    • /
    • 2002
  • In this work, numerical parametric studies on spray combustion have been conducted. In simulation of turbulence, RNG ${\kappa}-{\varepsilon}model$ is adopted. Initial spray distribution is specified by Rosin-Rammler distribution function. Eddy break-up model is adopted as a combustion model. The parameters considered are inlet air temperature, swirl number, and SMD. With higher inlet air temperature, the axial velocities are increased and penetration of primary jet is stronger than that of lower inlet air temperature and temperature at the exit of combustor is more uniform. Combustion efficiency is improved with high inlet air temperature. The effect of swirl number on flow field is not significant. It affect only recirculation zone. So temperature at upstream of combustor is influenced. Combustion efficiency deteriorate as SMD of fuel spray increase.

  • PDF

Numerical Simulation for Model Gas Turbine Combustor (모형 가스터빈 연소기의 수치해석적 연구)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.

Understanding high-mass star formation through KaVA observations of water and methanol masers

  • Kim, Kee-Tae;Hirota, Tomoya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.51.4-51.4
    • /
    • 2019
  • We started a systematic observational study of the 22 GHz water and 44 GHz class I methanol masers in 87 high-mass young stellar objects (HM-YSOs) as a KaVA large program (LP). The primary goal is to understand dynamical evolution of HM-YSOs and their circumstellar structures by measuring spatial distributions and 3-dimensional velocity fields of multiple maser species. In the first-year observations (2016-2017), we made snap-shot imaging surveys of 25 water and 19 methanol maser sources. In the second-year observations (2018-2019), we have carried out monitoring observations of 19 water and 3 methanol maser sources that were selected on the basis of the first-year survey results. By combining follow-up observations with VERA (distances), JVN/EAVN (6.7 GHz methanol masers), and ALMA cycles 3 and 6 (thermal lines/continuum), we will provide novel information on physical properties (density, temperature, size, mass), 3D dynamical structures of disk/jet/outflow/infalling envelope, and relationship between evolutionary of HM-YSOs. In this presentation, we will report the current status and future plans of our KaVA large program.

  • PDF

An Increase in Mesenchymal Stem Cells Expressing Nestin in Bone-Marrow-Derived Primary Cells Stimulates Neurogenic Differentiation in Rat

  • Han, Na Rae;Lee, Hyun;Yun, Jung Im;Kim, Choonghyo;Hwang, Jae Yeon;Park, Kyu Hyun;Lee, Seung Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.2
    • /
    • pp.39-45
    • /
    • 2017
  • Mesenchymal stem cells (MSCs) have been considered an alternative source of neuronal lineage cells, which are difficult to isolate from brain and expand in vitro. Previous studies have reported that MSCs expressing Nestin ($Nestin^+$ MSCs), a neuronal stem/progenitor cell marker, exhibit increased transcriptional levels of neural development-related genes, indicating that $Nestin^+$ MSCs may exert potential with neurogenic differentiation. Accordingly, we investigated the effects of the presence of $Nestin^+$ MSCs in bone-marrow-derived primary cells (BMPCs) on enhanced neurogenic differentiation of BMPCs by identifying the presence of $Nestin^+$ MSCs in uncultured and cultured BMPCs. The percentage of $Nestin^+$ MSCs in BMPCs was measured per passage by double staining with Nestin and CD90, an MSC marker. The efficiency of neurogenic differentiation was compared among passages, revealing the highest and lowest yields of $Nestin^+$ MSCs. The presence of $Nestin^+$ MSCs was identified in BMPCs before in vitro culture, and the highest and lowest percentages of $Nestin^+$ MSCs in BMPCs was observed at the third (P3) and fifth passages (P5). Moreover, significantly the higher efficiency of differentiation into neurons, oligodendrocyte precursor cells and astrocytes was detected in BMPCs at P3, compared with P5. In conclusion, these results demonstrate that neurogenic differentiation can be enhanced by increasing the proportion of $Nestin^+$ MSCs in cultured BMPCs.

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Novel structure for a full-color AMOLED using a blue common layer (BCL)

  • Kim, Mu-Hyun;Chin, Byung-Doo;Suh, Min-Chul;Yang, Nam-Chul;Song, Myung-Won;Lee, Jae-Ho;Kang, Tae-Min;Lee, Seong-Taek;Kim, Hye-Dong;Park, Kang-Sung;Oh, Jun-Sik;Chung, Ho-Kyoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.797-798
    • /
    • 2005
  • We report a novel structure for a full-color AMOLED (Active Matrix Organic Light Emitting Diode) eliminating the patterning process of a blue emitting layer. The patterning of the three primary colors, RGB, is a key technology in the OLED fabrication process. Conventional full color AMOLED containing RGB layers includes the three opportunities of the defects to make an accurate position and fine resolution using various technologies such as fine metal mask, ink-jet printing and laser-induced transfer system. We can skip the blue patterning step by simply stacking the blue layer as a common layer to the whole active area after pixelizing two primary colors, RG, in the conventional small molecular OLED structure. The red and green pixel showed equivalent performances without any contribution of the blue emission.

  • PDF

A numerical method for the study of fluidic thrust-vectoring

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.367-378
    • /
    • 2016
  • Thrust Vectoring is a dynamic feature that offers many benefits in terms of maneuverability and control effectiveness. Thrust vectoring capabilities make the satisfaction of take-off and landing requirements easier. Moreover, it can be a valuable control effector at low dynamic pressures, where traditional aerodynamic controls are less effective. A numerical investigation of Fluidic Thrust Vectoring (FTV) is completed to evaluate the use of fluidic injection to manipulate flow separation and cause thrust vectoring of the primary jet thrust. The methodology presented is general and can be used to study different techniques of fluidic thrust vectoring like shock-vector control, sonic-plane skewing and counterflow methods. For validation purposes the method will focus on the dual-throat nozzle concept. Internal nozzle performances and thrust vector angles were computed for several range of nozzle pressure ratios and fluidic injection flow rate. The numerical results obtained are compared with the analogues experimental data reported in the scientific literature. The model is integrated using a finite volume discretization of the compressible URANS equations coupled with a Spalart-Allmaras turbulence model. Second order accuracy in space and time is achieved using an ENO scheme.