• Title/Summary/Keyword: Primary jet

Search Result 128, Processing Time 0.03 seconds

Flow Analysis in an Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;박상규;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1308-1316
    • /
    • 2001
  • This paper described a numerical investigation performed to understand better the effects of flow parameters in an entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG $k-\varepsilon$ model for turbulent flow. The calculation parameters were the ratio of primary and secondary jet velocity and the height difference between primary and secondary jet As the secondary jet velocity increased, the upper recirculation 3one of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet Velocity at which the size of upper and lower recirculation zone was reversed.

  • PDF

Effect of Mixed Jet with Primary Nozzle Area Ratio of Ejector on Oxygen Transfer Characteristics (산소 전달 특성에 미치는 이젝터 구동 노즐 면적비에 따른 혼합 분류의 영향)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.126-133
    • /
    • 2022
  • The objective of this is to experimentally investigate the effect of mixed jet on the oxygen transfer characteristics with the primary nozzle area ratio of an annular nozzle ejector for the application of a microbial fuel cell. A direct visualization method with a high speed camera system was used to capture the horizontal mixed jet images, and a binarization technique was used to analyze the images. The clean water unsteady state technique was used for the oxygen transfer measurement. The air-water mixed jet discharging into a water tank behaved similar to a buoyancy or horizontal jet with the primary nozzle area ratio. It was found that an optimum primary nozzle area ratio was observed where the oxygen transfer performance reached its maximum value due to the decrease of air volume fraction and the increase of jet length and air bubble dispersion.

A Study of Two Phase Flow Control in a Combustion Chamber (연소실내의 2상유동 제어에 관한 연구)

  • 박상규;김정훈;임종환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.637-643
    • /
    • 2001
  • Two-phase flow in a combustion chamber is experimentally analyzed according to the five different conditions in the Reynolds numbers of $1.02{\times}10^4$. As the height difference between the primary and secondary jets increases, the secondary has a little less effect on the primary one in the case on the same height difference, the primary jet is affects as the velocity of th secondary on increase. The primary-jet flow field cause the particle concentration since is controlled by the velocity of secondary jet, the height difference, and the angle of primary jet in the test section.

  • PDF

Temporally developing behavior of an evolving jet diffusion flame (전개확산제트화염의 시간 발달 거동)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.486-493
    • /
    • 1997
  • Experimental investigations on the comparison of developments between transient jets and evolving jet diffusion flames have been made in initial injection period. To achieve this experiment, an ignition technique using a residual flame as the ignition source is devised. High speed Schlieren visualizations, and measurements including jet tip penetration velocities and jet widths of the primary vortex are employed to examine the developing processes for several flow conditions. It is seen that the developing behaviors in the presence of flame are greatly different from those in transient jet, and thus the flow characteristics in the transient part are also modified. The discernible differences are shown to consist of the delay of the rollup of the primary vortex, the faster spreading after the rollup due to exothermic expansion, and the survival of only a primary vortex. The growth of primary vortex in the transient jet is properly explained through an impulsively started laminar vortex prior to the interaction. It is also found that the jet tip penetration velocity varies with elapsed time and an increase in Res gives rise to a higher tip penetration velocity.

Flow Analysis in a Entrained Flow Combustor (분류층 연소기내의 유동해석)

  • 양희천;김중현
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.30-36
    • /
    • 2000
  • A numerical study was conducted to investigate the effects of flow parameters in a entrained flow combustor on the flow characteristics. The computational model was based on the gas phase Eulerian equations of mass, momentum and energy. The code was formulated with RNG k-$\varepsilon$ model for turbulent flow. The calculation parameters were the magnitude of primary and secondary jet velocity and the height difference between primary and secondary jet. As the secondary jet velocity increased, the upper recirculation zone of the primary jet was strengthened. It was found that as the primary jet velocity increased, there was a critical jet velocity at which the size of upper and lower recirculation zone was changed.

  • PDF

Visualization of the Supersonic Swirl Jet with Annular Stream (환형 유동을 수반하는 초음속 스월 제트 유동의 가시화)

  • Kim Jung-Bae;Lee Kwon-Hee;Setoguchi Toshiaki;Kim Heuy-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.91-94
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic swilling jets are emitted from a sonic inner nozzle and the outer annular nozzle produces the co/counter swirling streams against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pilot impact and static pressure measurements, and visualized by using the Schlieren optical method. The experiment has been performed fur different swirl intensities and pressure ratios. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets, and the effect of the secondary counter-swirling jet on the primary inner jet is similar to the secondary co-swirl jet case.

  • PDF

A Study of Flow Control in a Combustion Chamber (연소실내의 유동제어에 관한 연구)

  • 김정훈
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.86-92
    • /
    • 2000
  • Two-phase flow in a combustion chamber is experimentally analyzed according to the five different conditions in the Reynolds number of $1.02{\times} 10^4$ As the height difference between the primary and secondary jets increases the secondary has a little effect on the primary. In the case of the same height difference the primary jet is affected as the velocity of secondary increases. The primary-jet flow field causes the particle concentration since the particle stagnation phenomena appear in the recirculation zone. The particle concentration is controlled by the velocity of secondary jet the height difference and the angle of primary jet in the test section.

  • PDF

Three Dimensional Simulation Model of Fuel Delivery Jet Pump (연료 송출용 제트펌프 3차원 전산해석 모델)

  • PARK, DAIN;YUN, JIN WON;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.308-314
    • /
    • 2017
  • Jet pump in automotive fuel tank module is used to deliver fuel to fuel pump so that the pump is operated without aeration in suction side. In this study, three dimensional simulation model of jet pump is developed to understand performance variation over design parameters. Performance of jet pump is also investigated experimentally in terms of operating pressures. The experimental data is used to verify the three dimensional simulation model of jet pump. Verification results show that the three dimensional simulation model of jet pump is about 1% error with experiment. The simulations are conducted in terms of throat ratio and primary flow induction angle. As the throat ratio is increased, the flux ratio is trade-off at 3 times of throat diameter. On the other hand, as primary flow induction angle is increased, vapor pressure inside the nozzle is decreased. In summary, the results show that liquid jet pump has to be optimized over design parameters. Additionally, high velocity of induced flow is able to evolve cavitation phenomena inside the jet pump.

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (환형동축 초음속 자유 제트유동에 관한 실험적 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF

The Effect of the Secondary Annular Stream on Supersonic Jet

  • Lee, Kwon-Hee;Toshiaki Setoguchi;Shigeru Matsuo;Kim, Hyeu-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1793-1800
    • /
    • 2003
  • The present study addresses an experimental investigation of the near field flow structures of supersonic, dual, coaxial, free, jet, which is discharged from the coaxial annular nozzle. The secondary stream is made from the annular nozzle of a design Mach number of 1.0 and the primary inner stream from a convergent-divergent nozzle. The objective of the present study is to investigate the interactions between the secondary stream and inner supersonic jets. The resulting flow fields are quantified by pitot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the primary jet are varied to obtain over-expanded flows and moderately under-expanded flows at the exit of the coaxial nozzle. The pressure ratio of the secondary annular stream is varied between 1.0 and 4.0. The results show that the secondary annular stream significantly changes the Mach disc diameter and location, and the impact pressure distributions. The effects of the secondary annular stream on the primary supersonic jet flow are strongly dependent on whether the primary jet is under-expanded or over-expanded at the exit of the coaxial nozzle.