• 제목/요약/키워드: Primary energy consumption

검색결과 183건 처리시간 0.027초

다목적 복합건물의 하절기 열원기기 운전시 소비전력에 관한 시뮬레이션 (Simulation on Energy Consumption in the Summer Season Operation of primary HVAC system for Multipurpose Building Complex)

  • 서재경;최승길;강채동
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.903-908
    • /
    • 2006
  • Building energy simulation has become a useful tool for predicting cooling, heating and air-conditioning loads for facilities. It is important to provide building energy performances feed back to the mechanical and electrical system operator and engineer for energy conservation and maintenance of building. From this research, we set up the typical weather data of location, basic description of building, geometric modelling data and the specification of Installed primary HVAC system for establishing the simulation model about energy consuming that take place in multipurpose building complex. The simulation tool of building energy - EnergyPlus (DOE and BLAST based simulation S/W), it has been used and accomplished calculations and analyses for evaluating the effect of the system types and operating condition of central HVAC plant on the building energy consumption. In this paper, we offer comparison and simultaneous results those involve electricity consumption pattern and amount between actual operation versus EnergyPlus simulation to the object building during summer season.

  • PDF

건축물에너지효율등급 평가프로그램에 의한 공동주택 난방에너지 소요량과 실제 사용량 비교 (Comparing the actual heating energy with calculated energy by the amended standard building energy rating system for apartment buildings)

  • 이아람;김정국;김종훈;정학근;장철용;송규동
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.103-107
    • /
    • 2015
  • Purpose: Since September 1st, 2013, subjects of the evaluation have been expanded, and the evaluation standard has been detailed to enable Building energy rating system for all buildings. Accordingly, the new evaluation program (ECO2) has been developed, and therefore, apartment applied after September 1st, 2013 were evaluated with the new evaluation program. Therefore, this research suggests the improvement plan to figure out reasons for the evaluation result calculation and to calculate the evaluation results close to the actual energy usage by analyzing and comparing primary energy consumption as a result of the new evaluation program (ECO2) and actual heating energy usage on the same building. Method: When comparing evaluation results of the new evaluation program (ECO2) and actual heating energy usage, the tendency was similar but different. Also when comparing seasonally, the tendency was similar, but the different between actual heating energy usage and primary energy consumption during winter is greater than during spring or fall, and when comparing seasonal electric usage, heating alternatives were used through increased electrical usage during winter compared to during spring or fall. Result: Therefore, when evaluating apartment with the new program (ECO2) in the future, evaluation items relevant to the use of heating alternatives should be added, and the modification factor should be added according to the region. Based on the evaluation results of the research and actual energy usage, the Modification factors of the central part and the southern part were calculated respectively as 0.5 and 0.8.

초기투자비와 1차 에너지소비량을 고려한 에너지시스템의 다중최적 설계 방법론 (A Multi-objective Optimization Method for Energy System Design Considering Initial Cost and Primary Energy Consumption)

  • 공동석;장용성;허정호
    • 설비공학논문집
    • /
    • 제26권8호
    • /
    • pp.357-365
    • /
    • 2014
  • This paper proposed a multi-objective optimization method for building energy system design using primary energy consumption and initial cost. The designing of building energy systems is a complex task, because life cycle cost and efficiency of building are determined by decisions of engineer during the early stage of design. Therefore, methods such as pareto analysis that can generate various alternatives for decision making are necessary. In this study, the optimization is performed using the NSGAII and case study was carried out for feasibility of the proposed method. As a result, alternative solutions can be obtained for the optimal building energy system design.

국내 초·중등 교육시설의 에너지 소비 특성 분석 (Analysis of Energy Consumption Characteristics of Education Facilities in Korea)

  • 이재호;현인탁;윤여범;이광호;진경일
    • KIEAE Journal
    • /
    • 제14권5호
    • /
    • pp.59-65
    • /
    • 2014
  • Nowadays, reduction of energy use in buildings is a big issue, especially in public buildings like schools. The building structure is very simple in that, the room size, schedule and user number is similar across different schools. There are many policies which are suitable for this kind of buildings. Investigation of energy consumption pattern in primary school, middle school and high school in different cities of Korea has been done in this paper using statistical data from national organization and the data from IBM and Gyeonggi Provincial Office of Education, aimed at providing the basic data for the development of energy efficiency improvement policies of educational facilities. The study was divided according to climate, energy source type and public or private school, as different cities have different climates and accordingly different amount of energy sources are used. It was observed that, the average energy consumption in primary school is $36.9kWh/m^2$, in middle school is $20.5kWh/m^2$ and in high school $27.4kWh/m^2$. As further analysis, monthly energy consumption pattern has been analyzed for one city.

Fault-tolerant Scheduling of Real-time Tasks with Energy Efficiency on Lightly Loaded Multicore Processors

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International journal of advanced smart convergence
    • /
    • 제7권3호
    • /
    • pp.92-100
    • /
    • 2018
  • In this paper, we propose a fault-tolerant scheduling scheme with energy efficiency for real-time periodic tasks on DVFS-enabled multicore processors. The scheme provides the tolerance of a permanent fault with the primary-backup task model. Also the scheme reduces the energy consumption of real-time tasks with the fully overlapped execution between each primary task and its backup task, whereas most of previous methods tried to minimize the overlapped execution between the two tasks. In order to the leakage energy loss of idle cores, the scheme activates a part of available cores with rarely used cores powered off. Evaluation results show that the proposed scheme saves up to 82% energy consumption of the previous method.

Quantifying Energy Consumption to the Level of Service Pressure in Water Distribution Network

  • Marlim, Malvin S.;Choi, Jeongwook;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.458-458
    • /
    • 2022
  • It is essential to reduce global carbon emissions, mainly from energy use. The water supply and distribution sector is a vital part of human society and is one of the primary energy consumers. The procurement and distribution of water require electricity to operate the pump to deliver water to users with sufficient pressure. As the water users are spatially distributed over a wide area, the energy required to deliver water to each user differs depending on the corresponding supplying element (reservoir, tank, pipe, pump, and valve). This difference in energy required for each user also comes with a difference in pressure availability which affects the level of service for individual users and the whole network. Typically, there is a disproportion where users close to the source experience excessively high pressure with low energy consumption. In contrast, remote users need more energy to get the minimum pressure. This study proposes the Energy Return Index (ERI) to quantify the pressure return from particular energy consumption to supply water to each node. The disproportionality can be quantified and identified in the network using the proposed ERI. The index can be applied to optimize the network elements such as pump operation and tank location/size to reach a balanced energy consumption with the appropriate level of service.

  • PDF

제로에너지시티 계획을 위한 건물에너지 수요 예측 방법론 개발 및 자립률 산정에 대한 연구 (A Study on the Methodology of Building Energy Consumption Estimation and Energy Independence Rate for Zero Energy City Planning Phase)

  • 배은지;윤용상
    • 한국태양에너지학회 논문집
    • /
    • 제39권5호
    • /
    • pp.29-40
    • /
    • 2019
  • In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.

멀티코어 프로세서상의 실시간 태스크들을 위한 중복 실행에 기반한 저전력 결함포용 스케줄링 (Energy-Efficient Fault-Tolerant Scheduling based on Duplicated Executions for Real-Time Tasks on Multicore Processors)

  • 이관우
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권5호
    • /
    • pp.1-10
    • /
    • 2014
  • 제시된 기법은 실시간 태스크들의 데드라인들을 만족하고 또한 기본-백업 태스크 모델을 사용하여 영구 결함을 포용하면서 멀티코어 프로세서의 에너지 소모량을 최소화하도록 태스크들을 스케줄링한다. 기존의 방법들이 기본 태스크와 백업 태스크의 중복 수행 시간을 최소화하도록 태스크들을 스케줄링했지만, 제시된 기법에서는 코어 속도를 최대한 줄이기 위해서 기본 태스크와 백업 태스크의 중복 수행 시간을 최대화하여 에너지 소모량을 감소시켰다. 제시된 기법이 에너지 소모량을 최소화시킴을 수학적으로 분석하였고, 또한 성능평가 실험을 통해서 제시된 기법이 기존 방법의 에너지 소모량을 최대 77%까지 감소시킴을 보였다.

하수처리장 에너지 자립화를 위한 하수 에너지 잠재력 회수 기술 (Recovering the Energy Potential of Sewage as Approach to Energy Self-Sufficient Sewage Treatment)

  • 배효관
    • 한국물환경학회지
    • /
    • 제34권1호
    • /
    • pp.121-131
    • /
    • 2018
  • Domestic sewage treatment plants (STPs) consume about 0.5 % of total electric energy produced annually, which is equivalent to 207.7 billion Korean won per year. To minimize the energy consumption and as a way of mitigating the depletion of energy sources, the sewage treatment strategy should be improved to the level of "energy positive". The core processes for the energy positive sewage treatment include A-stage for energy recovery and B-stage for energy-efficient nitrogen removal. The integrated process is known as the A/B-process. In A-stage, chemically enhanced primary treatment (CEPT) or high rate activated sludge (HRAS) processes can be utilized by modifying the primary settling in the first stage of sewage treatment. CEPT utilizes chemical coagulation and flocculation, while HRAS applies returned activated sludge for the efficient recovery of organic contents. The two processes showed organic recovery efficiencies ranging from 60 to 70 %. At a given recovery efficiency of 80 %, 17.3 % of energy potential ($1,398kJ/m^3$) is recovered through the anaerobic digestion and combustion of methane. Besides, anaerobic membrane bioreactor (AnMBR) can recover 85% of organic contents and generate $1,580kJ/m^3$ from the sewage. The recovered energy is equal to the amount of energy consumption by sewage treatment equipped with anaerobic ammonium oxidation (ANAMMOX)-based B-stage, $810{\sim}1,620kJ/m^3$. Therefore, it is possible to upgrade STPs as efficient as energy neutral. However, additional novel technologies, such as, fuel cell and co-digestion, should be applied to achieve "energy positive" sewage treatment.

건물의 냉, 난방 부하비율과 HVAC&R 시스템 1차 에너지 소비량의 상관관계분석 및 합리적 설계방안 연구 (Interaction Analysis between Cooling-to-Heating Load Ratio and Primary Energy Consumption of HVAC&R System for Building Energy Conservation)

  • 조진균;김진호;이성재;강호석
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.113-122
    • /
    • 2015
  • HVAC&R systems account for more than 50% of the energy consumption of buildings. The purpose of this study is to propose an optimal design method for the HVAC&R system and to examine the possibility for the energy conservation of a selected system. The energy demand for cooling and heating is determined by using TRNSYS and HEET. By an interaction between total system efficiency and cooling-to-heating load ratio, the optimal HVAC&R systems will be decided. The results showed that this proposed method is significantly capable of determining optimal system and building design for saving energy.