• Title/Summary/Keyword: Primary beam

Search Result 390, Processing Time 0.022 seconds

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Experimental Evaluation of New Seismic Connections between Rectangular Steel Tube Column and H-shaped Beam (각형강관 기둥-H형강 보 신형상 내진접합부의 실험적 평가)

  • Jin, Jooho;Kim, DooHwan;Kim, Hyunsook;Shin, Jinwon;Park, Kooyun;Lee, Kyungkoo
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • A through diaphragm is often used to ensure their stiffness for moment-resisting connections using rectangular steel-tube column and H-shaped beam. The through-diaphragm connections, however, have some difficulties for their applicabilities to the field due to the complexity of the fabrication and construction processes. This study thus proposes a new modular system of steel structures assembled only using bolts without welding, by bringing a connection module composed of rectangular steel-tube column, H-shaped beam and oneway bolt onto the site. An experimental study to evaluate the seismic performance of the proposed connection details based on the new modular system is then conducted. The length and type of the inner reinforcement plate are considered as the primary design parameters, and the strength, stiffness, ductility and energy dissipation capability of the new connections are experimentally analyzed by comparison to those of conventional through diaphragm connections.

Behavior and Failure Mode of Steel Coupling Beams Joint with FBP (FBP가 설치된 철골 커플링보 접합부의 거동 및 파괴모드)

  • Song Han-Beom;Yi Waon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1001-1009
    • /
    • 2005
  • The usefulness of walls in the structural planning of multistory buildings has long been recognized. When walls are situated in advantageous positions in a buildings, they can be very efficient in resisting lateral load. Specially coupled shear wall system is the primary lateral load resisting system of buildings. It is customary to refer to such walls as being 'coupled' by coupling beams. The coupling beams must exhibit excellent strength, stiffness ductility and energy dissipation capacity. To achieve these demands for steel coupling beam, steel coupling beam with Face Bearing Plate(FBP) embedded in the reinforced concrete walls is proposed. A comprehensive experimental test involving 2 steel coupling beam with and without FBP has been performed. Through experimental study, the evaluation of the advantage of that was establish and proposed the failure mode.

Comparison analyzation of Calculation Equations for Shear strength of Steel Plate Coupling Beam (철골 플레이트 커플링보의 전단강도에 대한 기준식의 비교.분석)

  • Lee, Kyung-Hwun;Song, Han-Beom;Park, Jin-Young;Yi, Waon-Ho;Tae, Kyung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.129-132
    • /
    • 2008
  • Coupled shear wall system is the primary seismic load resisting system of buildings. The coupling beam of these buildings must exhibit excellent ductility and energy dissipation capacity. To achieve better ductility and energy dissipation, the steel coupling beam embedded in the reinforced concrete walls is proposed. Performance of the steel coupling beam is mainly effected by embedment length. ACI equation and BS equation were examined with 23 previous test results. The statistical study uses the values of mean value, standard deviation, correlation coefficient, normal distribution curve, and error analysis. Through the analytical program, the evaluation of the 2 equations was established.

  • PDF

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

Effects of a new stirrup hook on the behavior of reinforced concrete beams

  • Zehra Sule Garip;Furkan Erdema
    • Structural Engineering and Mechanics
    • /
    • v.91 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • The primary aim of this study is to introduce an innovative configuration for stirrup hooks in reinforced concrete beams and analyze the impact of factors such as stirrup spacing, placement, and hook lengths on the structural performance of reinforced concrete beam elements. A total of 18 specimens were produced and subjected to reversed cyclic loading, with two specimens serving as reference specimens and the remaining 16 specimens utilizing a specifically developed stirrup hook configuration. The experiment used reinforced concrete beams scaled down to half their original size. These beams were built with a shear span-to-depth ratio of 3 (a/d=3). The experimental samples were divided into two distinct groups. The first group comprises nine test specimens that consider the contribution of concrete to shear strength, while the second group consists of nine test specimens that do not consider this contribution. The preparation of reference beam specimens for both groups involved the utilization of standard hooks. The stirrup hooks in the test specimens are configured with a 90-degree angle positioned at the midpoint of the bottom section of the beam. The criteria considered in this study included the distance between hooks, hook angle, stirrup spacing, hook orientation, and hook length. In the experimental group examining the contribution of concrete on shear strength, it was noted that the stirrup hooks of both the R1 reference specimen and specific test specimens displayed indications of opening. However, when the contribution of concrete on shear strength was not considered, it was observed that none of the stirrup hooks proposed in the R0 reference specimen and test specimens showed any indications of opening. Neglecting the contribution of concrete in the assessment of shear strength yielded more favorable outcomes regarding structural robustness. The study found that the strength values obtained using the suggested alternative stirrup hook were similar to those of the reference specimens. Furthermore, all the test specimens successfully achieved the desired strengths.

Bone apposition on implants coated with calcium phosphate by ion beam assisted deposition in oversized drilled sockets: a histologic and histometric analysis in dogs

  • Kim, Min-Soo;Jung, Ui-Won;Kim, Sungtae;Lee, Jung-Seok;Lee, In-Seop;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the osseointegration of calcium phosphate (CaP)-coated implants by ion beam assisted deposition with a lack of primary stability. Methods: A total of 20 CaP-coated implants were bilaterally placed in the mandible of five dogs. In the rotational implant group, the implants were inserted in oversized drilled sockets without mechanical engagement, while the conventional surgical protocol was followed in the control group. Each group was allowed to heal for 4 and 8 weeks. The bone-to-implant contact (BIC, %) was measured by a histometric analysis. Results: All of the implants were well-maintained and healing was uneventful. In the histologic observation, all of the implants tested were successfully osseointegrated with a high level of BIC at both observation intervals. There was no significant difference in BIC among any of the groups. Conclusions: Within the limitation of this study, successful osseointegration of CaP-coated implants could be achieved in unfavorable conditions without primary stability.

Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

  • Lee, Sung Uk;Cho, Kwan Ho;Moon, Sung Ho;Choi, Sung Weon;Park, Joo Yong;Yun, Tak;Lee, Sang Hyun;Lim, Young Kyung;Jeong, Chi Young
    • Radiation Oncology Journal
    • /
    • v.32 no.4
    • /
    • pp.238-246
    • /
    • 2014
  • Purpose: To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Materials and Methods: Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using $^{192}Ir$ between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. Results: The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT ${\pm}$ external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (${\leq}grade$ 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. Conclusion: HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

Design and Development Research of a Parametric Array Transducer for High Directional Underwater Communication (고지향 수중 통신을 위한 파라메트릭 어레이 트랜스듀서의 설계 및 개발 연구)

  • Hwang, Yonghwan;Je, Yub;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.117-129
    • /
    • 2015
  • A parametric array is a nonlinear phenomenon that generates a narrow beam of low-frequency sound using the nonlinearity of the medium. The low-frequency sound so generated has a low sound pressure compared with that of sound generated directly. Consequently, a transducer that can generate a primary wave with high directivity and level is required. This study designed, fabricated, and evaluated a multi-resonance transducer as a parametric array source. The designs of the unit transducers and array transducer were based on an analysis model. The design process was repeated to fabricate the optimum transducer. The fabricated transducer array can generate a 189 dB, 190 dB primary wave level at 6.3 m and a 134 dB difference frequency wave using the parametric array phenomenon. The difference frequency wave has a frequency of 15 kHz and high directivity with an $8^{\circ}$ half power beam width in a $12{\times}18{\times}10m$ water tank.

Radiation safety for pain physicians: principles and recommendations

  • Park, Sewon;Kim, Minjung;Kim, Jae Hun
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.129-139
    • /
    • 2022
  • C-arm fluoroscopy is a useful tool for interventional pain management. However, with the increasing use of C-arm fluoroscopy, the risk of accumulated radiation exposure is a significant concern for pain physicians. Therefore, efforts are needed to reduce radiation exposure. There are three types of radiation exposure sources: (1) the primary X-ray beam, (2) scattered radiation, and (3) leakage from the X-ray tube. The major radiation exposure risk for most medical staff members is scattered radiation, the amount of which is affected by many factors. Pain physicians can reduce their radiation exposure by use of several effective methods, which utilize the following main principles: reducing the exposure time, increasing the distance from the radiation source, and radiation shielding. Some methods reduce not only the pain physician's but also the patient's radiation exposure. Taking images with collimation and minimal use of magnification are ways to reduce the intensity of the primary X-ray beam and the amount of scattered radiation. It is also important to carefully select the C-arm fluoroscopy mode, such as pulsed mode or low-dose mode, for ensuring the physician's and patient's radiation safety. Pain physicians should practice these principles and also be aware of the annual permissible radiation dose as well as checking their radiation exposure. This article aimed to review the literature on radiation safety in relation to C-arm fluoroscopy and provide recommendations to pain physicians during C-arm fluoroscopy-guided interventional pain management.