• Title/Summary/Keyword: Primary aluminum

Search Result 136, Processing Time 0.023 seconds

Selection of an Optimal Conception Design for the Development of Noise-reduced System Aluminum Form (소음저감형 시스템 알루미늄 거푸집의 최적 개념디자인 선정)

  • Hong, Jong Hyun;Yeom, Dong Jun;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.2
    • /
    • pp.135-145
    • /
    • 2016
  • In Korea, a series of noise-reduced aluminum forms are being recently used in apartment housing construction. However, their complicated and time-consuming work processes, and the noise which is still generated due to the inherent property of aluminum when especially installing and dismantling them have been pointed out as a problem to be certainly solved for increasing their practical use in construction sites. The primary objectives of this study are proposing an optimal conceptual design of a newly designed noise-reduced aluminum form and verifying the technical feasibility by conducting a working mock-up drive experiment. Thus, conventional noise-reduced aluminum forms have been analyzed and three conceptual designs of a newly noise-reduced aluminum forms have been deducted. AHP has been applied to a survey data collected by interviewing field experts. A trade-off analysis results have shown that 'Noise-reduced System Aluminum Form with a Drop-down Floor Post and Adaptive Beam' the highest weights of safety(0.52), work convenience(0.54) and thus selected. The suggested conceptual design in this study improved problems of conventional system aluminum forms. It is also expected that the suggested design will be used as a reliable guideline for the actual development of an aluminum form that ensures noise-reduce, work convenience and labor safety.

Molecular Dynamics Simulation of Nano-Deformation Behavior of the Grain-Size Controlled Rheology Material (분자동력학을 이용한 결정립 제어 레오로지 소재의 나노 변형거동 전산모사)

  • Kim J. W.;Youn S. W.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.319-326
    • /
    • 2005
  • In this study, the nano-deformation behavior of semi-solid Al-Si alloy was investigated using a molecular dynamics simulation as a part of the research on the surface crack behavior in thixoformed automobile parts. The microstructure of the grain-size controlled Al-Si alloy consists of primary and eutectic regions. In eutectic regions the crack initiation begins with initial fracture of the eutectic silicon particles and inside other intermetallic phases. Nano-deformation characteristics in the eutectic and primary phase of the grain-size controlled Al-Si alloy were investigated through the molecular dynamics simulation. The primary phase was assumed to be single crystal aluminum. It was shown that the vacancy occurred at the zone where silicon molecules were.

Effect of Al-5Ti-B on the Microstructure of Rheology Material (Al-5Ti-B가 레오로지 소재의 미세조직에 미치는 영향)

  • Yang Z.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.299-302
    • /
    • 2005
  • Semisolid A356 slurries were prepared by electromagnetic stirring casting and by inoculation of Al-5Ti-B master alloy. As stirring time and addition of Al-5Ti-B are different, the grain size of the primary phase is different. Through the experiment of rheocast in a Buhler horizontal die casting machine, it was found that the finer the equiaxed primary dendrites, the smoother the die filling and better cast quality. Small equiaxed primary dendrite also results in less liquid segregation on the surface.

  • PDF

Effect of Primary Recrystallization Texture on the Formation of Grain Growth Texture in Aluminum 1050 Sheet (알루미늄 1050계 판재에서 결정립 성장 집합조직에 미치는 재결정 집합조직의 영향)

  • Kim, Hyun-Chul;Kang, Hyung-Gu;Huh, Moo-Young
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.356-362
    • /
    • 2009
  • In order to vary the primary recrystallization textures, AA 1050 sheets were cold rolled in two different manners. Differences in cold rolling schedule gave rise to the formation of different cold rolling textures also leading to the formation of different primary recrystallization textures. Upon annealing for grain growth, changes in microstructure and texture hardly occurred in the sample depicting Cube recrystallization texture, while grain growth was accompanied with the development {001}<100> Cube texture in the sample displaying a recrystallization texture comprising of weak rolling texture components. The selective growth of Cube oriented grains is attributed to the high mobility of their grain boundaries.

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Development of Primary Standard Gas Mixtures of Fourteen Volatile Organic Compounds in Hazardous Air Pollutants for Accurate Ambient Measurements in Korea (at 1 μmol/mol Levels) (유해대기오염물질 중 14종의 휘발성유기화합물 1차 표준가스개발 (1 μmol/mol 수준))

  • Kang, Ji Hwan;Kim, Young Doo;Kim, Mi Eon;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.331-341
    • /
    • 2018
  • Hazardous air pollutants(HAPs) in the atmosphere are regulated as major air pollutants in Korea by the Air Pollution Control Act. In order to manage and control HAPs, accurate standards, which are traceable to the International System of Units(SI), are required. In this study, primary standard gas mixtures(PSMs) of volatile organic compounds(VOCs) which are specified as HAPs were developed at $1{\mu}mol/mol$ levels. The selected fourteen VOCs include Benzene, Toluene, Ethylbenzene, m-Xylene, Styrene, o-Xylene, Chloroform, 1,1,2-Trichloroethane, Trichloroethylene, Tetrachloroethylene, 1,1-Dichloroethane, Carbon tetrachloride, 1,3-Butadiene, and Dichloromethane. The HAPs PSMs were gravimetrically prepared in aluminum cylinders and their consistency was verified within the relative expanded uncertainty of 0.71% (k=2). Potential adsorption loss onto the internal surface of cylinders was estimated by cylinder-to-cylinder division method. No adsorption loss was observed within the uncerainty of 0.53%. The long-term stability of the HAPs PSMs was evaluated comparing with freshly prepared HAPs PSMs. The HAPs PSMs were stable for one year within the uncertainty of 0.38%. The final uncertainty of the PSMs was determined by combining the preparation uncertainty, verification uncertainty, and stability uncertainty. Finally, traceable and stable HAPs PSMs at $1{\mu}mol/mol$ levels were developed with the uncertainty of less than 0.76% in high-pressure aluminum cylinders.

A Comparative Study on Mechanical Behavior of Low Temperature Application Materials for Ships and Offshore Structures (선박 및 해양구조물용 극저온 재료의 기계적 거동 특성)

  • Park, Woong-Sup;Kang, Ki-Yeob;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-199
    • /
    • 2011
  • Austenite stainless steel(ASS), aluminum alloy and nickel steel alloy are the most widely used in many cryogenic applications due to superior mechanical properties at low temperature. The Face-Centered Cubic(FCC) and Hexagonal Close-Packed(HCP) materials are used for the primary and secondary insulation barrier of Liquefied Natural Gas(LNG) carrier tank and various kinds of LNG applications currently. In this study, tensile tests of ASS, aluminum alloy and nickel steel alloy were carried out for the acquisition of quantitative mechanical properties under the cryogenic environment. The range of thermal condition was room temperature to $-163^{\circ}C$ and strain rate range was 0.00016/s to 0.01/s considering the dependencies of temperatures and strain rates. The comprehensive test data were analyzed in terms of the characteristics of mechanical behavior for the development of constitutive equation and its application.

Recovery of ultrafine particles from Chemical-Mechanical Polishing wastewater discharged by the semiconductor industry

  • Tu, Chia-Wei;Wen, Shaw-Bing;Dahtong Ray;Shen, Yun-Hwei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.715-718
    • /
    • 2001
  • This study uses traditional alum coagulation and sedimentation process to treat CMP wastewater from cleaning after polishing. The primary goal is to successfully recycle both solid fines and water for semiconductor manufacturing. Results indicated that CMP wastewater may be successfully treated to recover clean water and fine particles by alum coagulation. The optimum operating conditions for coagulation are as fellowing: alum dosage of 10 ppm, pH at 5, rapid mixing speed at 800 rpm, 5 min rapid mixing time, and long slow mixing time. The treated water with low turbidity and an average residual aluminum ion concentration of 0.23 ppm may be considered for reuse. The settled sludge after alum coagulation contains mainly SiO$_2$particle with a minor content of aluminum (1.7 wt%) may be considered as raw materials for glass and ceramic industry.

  • PDF

Aluminum toxicity-induced alterations of root proteome in wheat seedlings

  • Oh, Myeong Won;Roy, Swapan Kumar;Cho, Kun;Cho, Seong-Woo;Park, Chul-Soo;Chung, Keun-Yook;Choi, Jong-Soon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.127-127
    • /
    • 2017
  • Aluminum is the most abundant metallic element in the Earth's crust and considered as the most limiting factor for plant productivity in acidic soils. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang (Korean cultivar) were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated with $0{\mu}M$ $AlCl_3$ (control), $100{\mu}M$ $AlCl_3$ and $150{\mu}M$ $AlCl_3$ for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentrations of $K^+$, $Mg^{2+}$ and $Ac^{2+}$ were decreased whereas $Al^{3+}$ and $P_2O_5{^-}$ concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum was increased with morin staining. In this study, a proteome analysis was performed to identify proteins, which is responsible to aluminum stress in wheat roots. In 10-day-old seedlings, proteins were extracted from roots and separated by 2-DE, stained by CBB. Using image analysis, a total of 47 differentially expressed protein spots were selected, whereas 19 protein spots were significantly up-regulated such as s-adenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and 28 protein spots were significantly down-regulated such as heat shock protein 70, o-methytransferase 4, enolase, amylogenin by aluminum stress following protein spots analyzed by LTQ-FTICR mass spectrometry. The results provide the global picture of Al toxicity-induced alterations of protein profiles in wheat roots, and identify the Al toxicity-responsive proteins related to various biological processes that may provide some novel clues about plant Al tolerance.

  • PDF

Characterization and Enhancement of Package O2 Barrier against Oxidative Deterioration of Powdered Infant Formula

  • Jo, Min Gyeong;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.13-16
    • /
    • 2018
  • Powdered infant formula is susceptible to oxidation in the presence of oxygen. Even though the product is usually packaged in nitrogen atmosphere, the oxygen ingress through the package layer may occur in case of flexible pouches and affects the oxidation of the product. $O_2$ barrier of the package is thus important variable to protect the product from oxidative deterioration. $O_2$ barrier property was investigated for aluminum-laminated small pillow packs of $3.5{\times}17.5cm$. Storage temperature and combination of primary and secondary packages were evaluated as variables affecting the barrier for conditions of empty pouch flushed with nitrogen. Apparent oxygen transmission rate of the primary package exposed to air was $2.32{\times}10^{-3}mL\;(STP)\;atm^{-1}\;d^{-1}$ at $30^{\circ}C$ and its temperature dependence could be explained by activation energy of $28.5kJ\;mol^{-1}$ in Arrhenius relationship. The additional secondary package of nylon/PE film containing 20 primary packages was ineffective in modulating package $O_2$ transmission and was only marginally helpful when combined with oxygen scavenger. The same was true in suppressing the product oxidation when the primary package was filled with 14 g of the formula.