• Title/Summary/Keyword: Primary Vibration System

Search Result 189, Processing Time 0.033 seconds

Abnormal Sound from Heat Exchanger of Condensate Water System at Nuclear Power Plant (원전 복수계통 열교환기의 이음 원인 분석)

  • Lee, Jun-Shin;Lee, Wook-Ryun;Kim, Tae-Ryong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.469-474
    • /
    • 2016
  • Abnormal sound was heard from a heat exchanger of condensate water system in a nuclear power plant, which was identified as impact sound of a loose part later. Nuclear power plants are normally equipped with loose part monitoring system for primary water system, but not for secondary water system. The abnormal sound was analyzed by using the impact signal-processing methodology based on the Hertz theory. The predicted results for impact location and size of the loose part showed good agreement with those of the actual loose part found during the overhaul period in the plant. So, this analysis methodology for the impact signal will be widely utilized for the primary and secondary side of the nuclear power plant.

Numerical Feasibility Study for a Spaceborne Cooler Dual-function Energy Harvesting System

  • Kwon, Seong-Cheol;Oh, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.579-587
    • /
    • 2017
  • Spaceborne cryocoolers produce undesirable micro-vibration disturbances during their on-orbit operation, which are a primary source of image-quality degradation for high-resolution observation satellites. Therefore, to comply with the strict mission requirement of high-quality image acquisition, micro-vibration disturbances induced by cooler operation have always been subjected to an isolation objective. However, in this study, we focused on the applicability of energy harvesting technology to generate electrical energy from micro-vibration energy of the cooler and investigated the feasibility of utilizing harvested energy as a power source to operate low-power-consumption devices such as micro-electromechanical system (MEMS) devices. A tuned mass damper (TMD)-type electromagnetic energy harvester combined with a conventional passive vibration isolator was proposed to achieve this objective. The system performs the dual functions of electrical energy generation and micro-vibration isolation. The effectiveness of the strategy was evaluated through numerical simulations.

Nonlinear Torsional Oscillations of a System Incorporating a Hooke's Joint : Combination Resonances (훅조인트로 연결된 축계의 비선형 비틀림 진동 : 조합공진의 경우)

  • Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.706-711
    • /
    • 2005
  • Torsional oscillations of a system incorporating a Hooke's joint are investigated by studying a simple similar nonlinear 2-degree-of-freedom model, which has linear and quadratic nonlinear parametric excitations. The simple system is identified to have the possibilities of primary, sub harmonic and combination resonances. The case of simultaneous primary and combination resonances is selected for perturbation analysis to have the reduced amplitude-equations of motion. The same procedure is applied to the system incorporating a Hooke's joint.

Stabilization of elevation for gunner primary sight using variable structure control (가변구조제어에 의한 조준경 고각 안정화)

  • 김중완;이정규;김주상;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.643-647
    • /
    • 1990
  • Gunner primary sight(GPS) stabilization system lays line of sight(LOS) to find out a target and transmits informations to the fire control system (FCS). In a moving vehicle, accuracy of LOS and FCS depends on the design of GPS and servomechanism system. The heavy vibration of vehicle on the severe off-road environment degenerates the stabilization capability of GPS. In this study, to stabilize of elevation for GPS using the variable structure control, we derived the dynamic equation of GPS system and designed the variable structure controller. Computer simulation results fulfilled the static and dynamic stability of GPS using the variable structure control.

  • PDF

Initial Design of A Suspension Damper for Truck Driver's Seat (트럭 운전석 현가 댐퍼의 초기설계)

  • Baek, W.K.;Oh, S.W.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 1999
  • This study is about the design and analysis ot a suspension damper for truck driver's seat to improve the ride comfort. Trucks are usually subjected to hostile driving environments. Therefore, many truck driver's seat have suspension seats to isolate the vibration from the cab floor panel. Because the vehicle suspension system can reduce the primary vibration from the ground, only low frequency vibration can be transmitted to the driver's seat. But, this low frequency vibration can be harmful to the driver. The seat damper is very critical element to improve the ride comfort for the driver. In this study, a four-stage damper is designed and analyzed for the vibration capability. The damping coefficient of this damper can lie manually controlled in response to the road and driving environment.

  • PDF

Floor Impact Noise Reduction Performance of Double-Floor System in Apartments (공동주택 이중바닥구조의 바닥충격음 저감성능)

  • Baek, Gil-Ok;Park, Hong-Gun;Mun, Dae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.197-202
    • /
    • 2014
  • Floor Impact Noise is a structure-borne noise which is mainly caused by vibration of concrete slabs. The majority of previous studies have focused on investigating performance of absorbing sheets on the reduction of floor impact noise. But absorbing sheets do not efficiently reduce heavy-weight floor impact noise level because it cannot absorb slab vibration, which is the fundamental noise source. In this study, double-floor system was developed in order to reduce floor impact noise level in residual buildings. This floor system reduces heavy-weight impact noise level by reducing vibration response at the center of slab, which has maximum amplitude in the 1st vibration mode. In order to identify the performance of the double-floor system, experiments were planned. Primary test parameters are span of double floor, arrangement and types of absorbing sheets.

  • PDF

Design of a Speed Controller for 2-Mass System Based on Neural Network and Observer (신경 회로망과 관측기에 기반한 2-mass 시스템에서의 속도 제어기 설계)

  • 현대성;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.361-361
    • /
    • 2000
  • In the 2-mass system with flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission as the newly required speed response which is very close to the primary resonant frequency. This vibration makes it difficult to achieve quick responses of speed and disturbance rejection. In this paper, 2-mass system is designed by using pole placement based on optimal control theory fur fast speed response and torsional vibration elimination and using neural network for disturbance rejection in particular. The simulation results show that the proposed controller based on neural network and full state feedback controller has better performance than 려ll state feedback controller, especially fur disturbance rejection.

  • PDF

Evaluation of Torsional Vibration Isolation Damper in Automotive Transmissions Based on In-situ Torque Measurement (토크 측정을 이용한 차량 변속기용 비틀림 진동 절연 댐퍼 평가)

  • Kim, Gi-Woo;Jang, Jae-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.377-382
    • /
    • 2012
  • This paper presents a proof-of-concept study on the evaluation of torsional vibration isolation performance through in-situ output torque measurement by using a non-contacting magneto-elastic torque transducer installed in the vehicle driveline system. The de-trending processing is first conducted to extract the torsional vibration from the measured driveline output torque. In order to estimate the transmissibility, primary performance indicator of a vibration isolator, the magnitude of transmitted torsional vibration with different frequencies is compared. From the conservative estimation results, the torsional damper built in a lock-up clutch of a torque converter is identified to be a vibration isolator. The evaluation results show that the fluid damping by torque converter outperforms the vibration isolation function of a torsional damper, and the isolation performance needs to be enhanced.

Evaluation of Torsional Vibration Isolation Performance Using In-situ Driveline Output Torque Measurement (구동 출력 토크 측정을 이용한 비틀림 진동 절연 성능 평가)

  • Kim, Gi-Woo;Jang, Jae-Duk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.382-387
    • /
    • 2012
  • This paper presents a proof-of-concept study on the evaluation of torsional vibration isolation performance through in-situ output torque measurement by using a non-contacting magneto-elastic torque transducer installed in the vehicle driveline system. The de-trending processing is first conducted to extract the torsional vibration from the measured driveline output torque. In order to estimate the transmissibility, primary performance indicator of a vibration isolator, the magnitude of transmitted torsional vibration with different frequencies is compared. From the conservative estimation results, the torsional damper built in a lock-up clutch of a torque converter is identified to be a vibration isolator. The evaluation results show that the fluid damping by torque converter outperforms the vibration isolation function of a torsional damper, and the isolation performance needs to be enhanced.

  • PDF