• Title/Summary/Keyword: Primary Energy

Search Result 1,746, Processing Time 0.029 seconds

Energy approach for dynamic buckling of shallow fixed arches under step loading with infinite duration

  • Pi, Yong-Lin;Bradford, Mark Andrew;Qu, Weilian
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.555-570
    • /
    • 2010
  • Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy approach allows the dynamic buckling load to be determined without needing to solve the equations of motion.

A Multi-objective Optimization Method for Energy System Design Considering Initial Cost and Primary Energy Consumption (초기투자비와 1차 에너지소비량을 고려한 에너지시스템의 다중최적 설계 방법론)

  • Kong, Dong-Seok;Jang, Yong-Sung;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.357-365
    • /
    • 2014
  • This paper proposed a multi-objective optimization method for building energy system design using primary energy consumption and initial cost. The designing of building energy systems is a complex task, because life cycle cost and efficiency of building are determined by decisions of engineer during the early stage of design. Therefore, methods such as pareto analysis that can generate various alternatives for decision making are necessary. In this study, the optimization is performed using the NSGAII and case study was carried out for feasibility of the proposed method. As a result, alternative solutions can be obtained for the optimal building energy system design.

Comprehensive Analysis of Energy Consumption Rate and New Technology Trend in High-Performance Buildings related with Different Climatic Zones (세계 기후대별 High-Performance Buildings의 에너지 소비 원단위 평가 및 신기술 적용 동향 분석 연구)

  • Kim, Chul-Ho;Lee, Seung-Eon;Kim, Kang-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.63-72
    • /
    • 2018
  • In this study, we analyzed high-performance building technologies through a case study of 65 high-performance buildings in the U.S., Europe, Asia and Oceania. In detail, we reviewed the international trend of building energy-saving technology and energy consumption per unit area by analyzing buildings constructed within a 10 year period(2008-018). The primary energy consumption was $48-440kWh/m^2$, and the average value was calculated as $169.3kWh/m^2$. Although some buildings received high certification ratings, they did not meet either Korean or international energy evaluation standards. The system analysis revealed that many energy-saving technologies show various application rates in different countries because the technologies possess different properties. Furthermore, small-area building groups tended to have less primary energy consumption than the medium and large-area buildings, but the area-energy relationship $R^2$ value was analyzed as 0.3161, indicating no clear proportional relationship. Therefore, we propose that it is necessary to maximize the energy savings of buildings by taking into consideration a region's code, climate, building usage, area and space-using patterns to reduce energy and greenhouse gas emissions.

Analysis of the Building Energy Efficiency Rating Certified for Public Office Buildings (공공기관 업무용 건물의 건축물에너지효율등급 인증 현황 분석)

  • Lee, Han-Sol;Kim, Seo-Hun;Kim, Jonghun;Kim, Jun-Tae;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.75-82
    • /
    • 2015
  • Purpose: The first grade of Korea's Building Energy Efficiency Rating System(BEERS) is required for new government office buildings as a mandatory measure to reduce greenhouse gas emission. However, there is no specific criteria about performance that which level should apply to energy-saving design element for obtaining Building Energy Efficiency Rating 1st grade. Therefore, Certification status should be analyzed firstly, about the office building which is certificated. Certification analysis for office buildings acquired certification therefore should be done first. Method: In this study, Certification status(Office buildings acquired Building Energy Efficiency Rating Certification)was analyzed by classified year, region, specific scale etc. And we analyzed statistically by eliciting an average value of each element influencing to the amount of energy. Result: Energy demands were gradually decreased due to revision of thermal insulation standards for enhanced u-value. Energy consumptions were different from the kind of equipment and yearly trends applied depending on the size of the building. Total primary energy consumptions were influenced by heat source types and the primary energy scale factors.

Optimal Utilization of a Cognitive Shared Channel with a Rechargeable Primary Source Node

  • Pappas, Nikolaos;Jeon, Jeong-Ho;Ephremides, Anthony;Traganitis, Apostolos
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.162-168
    • /
    • 2012
  • This paper considers the scenario in which a set of nodes share a common channel. Some nodes have a rechargeable battery and the others are plugged to a reliable power supply and, thus, have no energy limitations. We consider two source-destination pairs and apply the concept of cognitive radio communication in sharing the common channel. Specifically, we give high-priority to the energy-constrained source-destination pair, i.e., primary pair, and low-priority to the pair which is free from such constraint, i.e., secondary pair. In contrast to the traditional notion of cognitive radio, in which the secondary transmitter is required to relinquish the channel as soon as the primary is detected, the secondary transmitter not only utilizes the idle slots of primary pair but also transmits along with the primary transmitter with probability p. This is possible because we consider the general multi-packet reception model. Given the requirement on the primary pair's throughput, the probability p is chosen to maximize the secondary pair's throughput. To this end, we obtain two-dimensional maximum stable throughput region which describes the theoretical limit on rates that we can push into the network while maintaining the queues in the network to be stable. The result is obtained for both cases in which the capacity of the battery at the primary node is infinite and also finite.

Energy Flow in a Coastal Salt Marsh Ecosystem (海岸 鹽濕地 生態系의 에너지 流轉)

  • Kim, Joon-Ho;Beung Tae Ryu
    • The Korean Journal of Ecology
    • /
    • v.8 no.3
    • /
    • pp.153-161
    • /
    • 1985
  • Energy flow through the trophic levels was studied at a salt marsh ecosystem distinguished into low and high marsh. Gross primary productions of Suaedeto-Salicornietum and Artemisieto-Limonietum at low marsh were 8, 299 and 13, 154kca/$m^2$/yr, and those of Calama-grostetum and Sonchuso-Setaetum at high marsh were 17, 899 and 15, 177kca/$m^2$/yr, respectively. Efficiencies of solar energy utilization of plants were 1.7 and 2.6% at the former, and were 3.6 and 3.2% at the latter. Of gross productions, net primary productions were 3, 977 and 5, 280kca/m2/yr at low marsh and were 6, 354 and 5, 329kca/$m^2$/yr at high marsh, and the remainder, 52~67%, was consumed by respiration of plants. A small amount (0.03~0.04%) of the net primary production was flowed through grazing food chain and most amout was transferred into dead parts. Of dead parts, 40% was accuulated as litter and the rest was decomposed into detritus. In the detritus food chain, a little energy was utilized by detritus feeder, and a major by microorganism. The amounts of energy flowed through grazing and detritus feeders at high marsh were much more than those at low marsh, but tertary production as spider was Vice versa.

  • PDF

Improvement of aseismic performance of a PGSFR PHTS pump

  • Lee, Seong Hyeon;Lee, Jae Han;Kim, Sung Kyun;Kim, Jong Bum;Kim, Tae Wan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1847-1861
    • /
    • 2020
  • A design study was performed to improve the limit aseismic performance (LSP) of a primary heat transport system (PHTS) pump. This pump is part of the primary equipment of a prototype generation IV sodium-cooled fast reactor (PGSFR). The LSP is the maximum allowable seismic load that still ensures structural integrity. To calculate the LSP of the PHTS pump, a structural analysis model of the pump was developed and its dynamic characteristics were obtained by modal analysis. The floor response spectrum (FRS) initiated from a safety shutdown earthquake (SSE), 0.3 g, was applied to the support points of the PHTS pump, and then the seismic induced stresses were calculated. The structural integrity was evaluated according to the ASME code, and the LSP of the PHTS pump was calculated from the evaluation results. Based on the results of the modal analysis and LSP of the PHTS pump, design parameters affecting the LSP were selected. Then, ways to improve the LSP were proposed from sensitivity analysis of the selected design variables.

The Analysis Study on Supplying Heat by Various Control Methods in District Heating System (지역난방 시스템에서 제어방법에 따른 공급열량의 해석적 연구)

  • Kim, Seong-Su;Jung, Sang-Hum;Moon, Youn-Jin;Cho, Sung-Hwan;Ryu, Jae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1008-1013
    • /
    • 2009
  • The theoretical simulation to predict the variation of supplying heat according to control methods of DHS(District Heating System) have been done by TRNSYS(A Transient System Simulation Program) 16. The physical system for DHS consists of primary and secondary supplying heating loop which is divided by based on heat exchanger for heating demand of building. The simulation results showed that control of secondary supplying heat had influenced more than primary supplying heat control to total energy consumption of DHS. And the outside temperature reset control of primary supplying heating loop could be reduced until about 4% overheating of each zone.

  • PDF

The Analysis of Activity Energy, Total Energy, and Estimated Energy Expenditures in 5th and 6th Grade Primary School Students (초등학교 5, 6학년 남녀학생의 활동에너지 소비량 및 에너지필요추정량 분석)

  • Kim, Mi-Jeong;Na, Hyeon-Ju;Kim, Young-Nam
    • Korean Journal of Community Nutrition
    • /
    • v.16 no.2
    • /
    • pp.195-205
    • /
    • 2011
  • This study was conducted to investigate the time spent, activity coefficient and energy expenditure on 7 different types of activity. Total of 386 5th and 6th grade primary school boys and girls in Seoul participated in this study. The participants spent 8 hrs for rest, 4 hrs for out of school study, 3 hrs for leisure, 1 hr 45 mins. for hygiene, 1 hr for commute, and 15 mins. for house choir activity in the day of 6 class hours. The average activity coefficient of 1 day for boys and girls were 1.69 and 1.64, respectively. The TEEs were 2,382 kcal and 2,050 kcal for boys and girls, respectively. The energy cost for study related activity (in school and study activities) was 40% of the TEE, and for rest 20%, for commute 9%, and for hygiene 10% of the TEE. The energy cost for house choir was only about 2% of TEE. The 91.2% participant's EER was higher than the EER shown in the table of 2010 DRI for Koreans. When the participant's EER was compared with the energy allowance calculated by the method in 2000 RDA for Korean, 81.6% was in the range of ${\pm}5%$, and the correlation coefficients between the 2 values were 0.981 for boys and 0.978 for girls, which means high agreements.

Fault-tolerant Scheduling of Real-time Tasks with Energy Efficiency on Lightly Loaded Multicore Processors

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.92-100
    • /
    • 2018
  • In this paper, we propose a fault-tolerant scheduling scheme with energy efficiency for real-time periodic tasks on DVFS-enabled multicore processors. The scheme provides the tolerance of a permanent fault with the primary-backup task model. Also the scheme reduces the energy consumption of real-time tasks with the fully overlapped execution between each primary task and its backup task, whereas most of previous methods tried to minimize the overlapped execution between the two tasks. In order to the leakage energy loss of idle cores, the scheme activates a part of available cores with rarely used cores powered off. Evaluation results show that the proposed scheme saves up to 82% energy consumption of the previous method.